发布时间:2020-04-23 22:13 原文链接: 细胞线粒体内部精细结构研究(二)

2、改良了传统SIM方法产生衍射光栅的方法

2D-SIM成像需要通过产生两束互相干涉的光来形成三种不同偏振方向,且光强在空间上呈正弦变化的结构光。在传统的SIM成像方法中,这一过程除了要依靠液晶硅基的空间光调制器(LCOS-SLM)对光相位进行调制之外,还需要一种特殊的光学器件来改变光的偏振方向——旋偏器(polarization rotator)。但这个器件本身的响应时间是ms数量级的,所以成为了高速SIM成像的一个限制因素。

而陈教授团队自主设计了新的偏振旋转玻片阵列,使其可以更好的配合SLM和相机曝光,使得激发光的偏振方向做最快速的切换。

 

图中PR所示部分即旋偏器,b中上下两部分的双向箭头分别表示入射光和经过旋偏器后光的偏振方向。

3、极大程度的降低图像采集和重构过程中产生的Artifact

我们都知道在SIM方法中,算法重建也起着相当重要的作用。但是在解卷积的算法中,计算机或者说软件对信号和噪音的解读是“一视同仁”的。换句话说它很难自己告诉自己哪些地方是信号,哪些地方是噪声。

所以,为了将SIM成像的低光漂泊和光毒性优点发挥到极致,不得不克服在弱光低信噪比情况下算法所重建出来的Artifact。为了应对相应的问题,谭山教授团队提出了一种能够基于生物样品结构相关的先验知识来屏蔽噪音信号的重建算法——Hessian解卷积算法。

 

这个就是Hessian解卷积算法的最优解形式,以及其中的Hessian罚分矩阵(别问,小编也不懂̷̷扶额.jpg

我们知道,样品信号除了在xy平面上具有连续结构之外,当其每一帧的运动距离小于系统空间分辨率时,它在xyt的时空上也是连续的。相反,背景噪声在重建后形成的Artifact则是时空分布随机和无特定形态的,因此通过这一标准就可以很好的去除这些Artifact。

通过比较Hessian解卷积算法和其他几种经典和常见的SIM重构算法(如Wiener、TV-SIM、fairSIM等),发现高速记录时的低信噪比图像在使用除Hessian之外的算法进行重构之后,均会有不同程度的Artifact产生(同样的情况在长时间激发引起的光漂泊现象中也能够观察到),而Hessian算法的表现则一如既往的好。

不同SIM解卷积算法重建超分辨图像的效果对比:样品为Lifeact-EGFP标记的微丝,曝光时间为0.5 ms,每组左图为0 s时刻的图像,右图为60 s时刻的图像。

此外,该系统也拥有超高的时间分辨率,并达到了188 Hz的帧速。有着这样的性能表现,其关键硬件——相机则应实现9倍以上的采集速度。

使用了第二代前照式sCMOS芯片,可在512×100的分辨率下进行2000帧/s的采集——作为目前科研领域最高速的CMOS相机,滨松sCMOS ORCA-Flash4.0 V3便是该系统的选择。

虽然使用前照式芯片是保证成像速率的必要之举,但是也并没在灵敏度上大打折扣。滨松Flash4.0相机具有业内最低的读出噪音(0.8 e-),同时82%的高量子效率,可保证在低曝光时间的条件下得到相对高的图像信噪比。

针对现在流行的超分辨成像技术,其相机芯片也做了更加精细的定量校准,将像素之间的光响应差异(PRNU)和噪音的不均一性(DSNU)都降到最低。

值得一提的是,Flash4.0输出的图像一直以来都是未经任何处理的原始图像,不在原始数据层面对噪音或hotpixel进行插值或滤波。这样在输入到各种重建或拟合的算法模型中才能得到准确的结果,避免了再人为引入其他Artifacts。

 

通过硬件创新和算法优化以及精确的时空信号控制,Hessian-SIM可以在低于传统SIM激发光功率的条件下,以更低的曝光时间进行图像采集,并对样品的原始信息高度还原。从而实现对细胞内瞬时变化的高速连续记录,或者对活细胞内部结构的长时观察。

在相同的光照条件下,以1 Hz频率进行拍摄1 h,传统SIM使用7 ms曝光,而Hessian-SIM使用0.5 ms曝光。

陈良怡教授团队一直致力于对高端的生物成像技术进行革新性的改良和研发。除了解决超分辨成像的长时间或高速问题之外,早在2014年就与程和平院士就将双光子和光片成像技术结合开发出激发光片范围更大同时z轴分辨率更高的成像技术(Zong W, Chen L, et al.CellRes. 2014 Sep 26. doi: 10.1038/cr.2014.124);2017年又针对双光子在神经生物学应用中的灵活性,开发出了现今质量最小的头戴式微型双光子显微镜(Zong W, Wu R, Li M, ChenL, et al. Nat Methods. 2017 May 29. doi: 10.1038/nmeth.4305),解决了行为学和活体显微观察的矛盾。