发布时间:2011-07-25 10:34 原文链接: 美绘出DNA一修饰因子基因图谱

  据美国物理学家组织网7月21日报道,美国科学家已经首次绘制出了人体胚胎干细胞内一个名为5-羟甲基胞嘧啶(5hmC)的修饰因子的全基因图谱。科学家们表示,5hmC在一些被打开或激活的基因内出现的频率非常高,最新研究将有助于癌症的控制。研究论文发表在最新一期《基因组生物学》杂志上。

  加州大学洛杉矶分校生命科学学院分子、细胞和发育生物学教授斯蒂芬·雅各布森表示,癌症通常是由于某些基因(比如肿瘤抑制基因)被不正确地关闭或发生了变异,或者一些本来应该被关闭的基因被打开了而引发的。对特定基因进行调控会大大影响癌症的恶化进程,因此,最新发现对癌症控制非常重要。

  最近才被发现的5hmC分子由DNA(脱氧核糖核酸)的碱基胞嘧啶添加一个甲基接着再添加一个羟基所形成,在胞嘧啶上新形成的这个羟甲基有潜力打开和关闭一个基因,但它身处基因组内的何处,目前还不得而知。理解5hmC如何工作以及在何处起作用,科学家才能更好地理解基因如何关闭和打开,进而研发出控制基因调节的新方法。

  人类胚胎干细胞富含5hmC分子,大脑中也富含5hmC分子。在试验中,雅各布森团队选择了人类的胚胎干细胞,使用基因组学来确定5hmC出现在人类胚胎干细胞的何处。

  雅各布森在研究中发现,5hmC倾向于出现在被激活的基因中,也出现在一类控制基因表达、名为增强器的DNA调节元件中。这表明,5hmC在激活细胞方面起关键作用,这同被人们研究得更多的5mC(DNA甲基化)的作用相反,5mC的主要作用是使基因沉默,它们之间的关系与科学家们之前认为的5hmC直接来源于5mC相吻合。

  雅各布森团队希望接下来揭示5hmC如何通过DNA甲基化被制造出来以及它如何被限制在基因组中的增强器等特定区域中。

相关文章

基因组研究证实:南部非洲智人曾半隔离生活数十万年

一项发表在最新一期《自然》杂志上的研究,通过对生活在10200至150年前的南非个体基因组进行分析,证实了在南部非洲,一群智人在半隔离的状态下生活了数十万年。这是迄今规模最大的对非洲古代DNA的研究,......

因美纳推出5碱基解决方案以驱动多组学发现,开启基因组与表观基因组的同步洞察

• 在美国人类遗传学会(ASHG)年会上,因美纳5碱基解决方案的早期试用客户——伦敦健康科学中心研究所将展示该技术在加速罕见病病例解析方面的强大潜力。• 因美纳专有的5碱基化学技术......

许瑞明研究组合作揭示人逆转座子LINE1靶向整合基因组的重要机制

人类基因组中存在大量具有"跳跃"能力的逆转座子(retrotransposon)序列。在胚胎发育早期、免疫和神经系统等特定阶段和环境下,它们会被激活,发挥重要生理功能;在病毒感染、......

高精度完整基因组助橡胶育种驶入“快车道”

橡胶树是天然橡胶的主要来源。“橡胶树育种面临的主要困难在于周期长和效率低,通过常规育种方法将多抗、高产性状聚合往往需要30~40年。”中国热带农业科学院橡胶研究所研究员程汉告诉《中国科学报》。然而,目......

小麦野生近缘种基因组“密码”被破解

记者宋喜群、冯帆从山东农业大学获悉,该校农学院教授孔令让研究团队首次组装了小麦远缘杂交常用物种中间偃麦草和鹅观草染色体水平的高质量基因组序列,解析了二者基因组结构差异与独立多倍化演化路径,对两者携带的......

烟草分枝发育的“开关基因”被发现

近日,中国农业科学院烟草研究所烟草功能基因组创新团队发现烟草分枝发育“开关基因”,预示着未来作物株型调控有了新靶点。相关研究成果发表在《植物生物技术》(PlantBiotechnologyJourna......

新研究破译薇甘菊入侵基因密码

薇甘菊作为全球十大最具危害的恶性入侵杂草之一,以其惊人的繁殖速度和强大的环境适应性,在亚洲、太平洋地区及中国华南地区造成严重生态破坏。然而,其基因组层面的适应性进化机制长期未被系统解析,制约了科学防控......

研究开发出酵母泛基因组数字模型与代谢网络分析方法

近日,中国科学院大连化学物理研究所研究员周雍进团队与上海交通大学副教授鲁洪中合作,在酵母系统生物学研究中取得新进展。研究团队通过整合分析全球1807株酿酒酵母菌株的基因组与生态位数据,构建了高覆盖度的......

基因组大数据还原野猪横跨欧亚的百万年迁徙历程

近日,中国农业科学院农业基因组研究所农业基因编辑技术创新团队深入解析了中亚野猪种群在跨越欧亚大陆百万年的迁徙历程中适应环境的独特遗传密码,为理解大型哺乳动物如何应对环境变化提供了全新视角。相关研究成果......

基因组密码被解锁:深度学习模型破解非编码区奥秘

人类基因组中超98%的遗传变异位于非编码区,这些变异通过调控染色质可及性、三维构象、剪接加工等多种分子机制影响基因表达,最终导致疾病发生。由于调控机制的复杂性和细胞类型特异性,目前解读非编码变异的分子......