二、PCR反应参数
1、变性:在第一轮循环前,在94℃下变性5-10min非常重要,它可使模板DNA完全解链,然后加入Taq DNA聚合酶(hot start),这样可减少聚合酶在低温下仍有活性从而延伸非特异性配对的引物与模板复合物所造成的错误。变性不完全,往往使PCR失败,因为未变性完全的DNA双链会很快复性,减少DNA产量.一般变性温度与时间为94℃ 1min。在变性温度下,双链DNA解链只需几秒钟即可完全,所耗时间主要是为使反应体系完全达到适当的温度。对于富含GC的序列,可适当提高变性温度。但变性温度过高或时间过长都会导致酶活性的损失。
2、退火:引物退火的温度和所需时间的长短取决于引物的碱基组成,引物的长度、引物与模板的配对程度以及引物的浓度.实际使用的退火温度比扩增引物的Tm值约低5℃。一般当引物中GC含量高,长度长并与模板完全配对时, 应提高退火温度。退火温度越高, 所得产物的特异性越高。有些反应甚至可将退火与延伸两步合并,只用两种温度(例如用60℃和94℃)完成整个扩增循环, 既省时间又提高了特异性。退火一般仅需数秒钟即可完成,反应中所需时间主要是为使整个反应体系达到合适的温度。通常退火温度和时间为37℃-55℃,1-2min。
3、延伸:延伸反应通常为72℃,接近于Taq DNA聚合酶的最适反应温度75℃。实际上,引物延伸在退火时即已开始,因为Taq DNA聚合酶的作用温度范围可从20℃-85℃.延伸反应时间的长短取决于目的序列的长度和浓度.在一般反应体系中,Taq DNA聚合酶每分钟约可合成2kb长的DNA。延伸时间过长会导致产物非特异性增加.但对很低浓度的目的序列, 则可适当增加延伸反应的时间。一般在扩增反应完成后,都需要一步较长时间(10-30min)的延伸反应,以获得尽可能完整的产物, 这对以后进行克隆或测序反应尤为重要。
4、循环次数: 当其它参数确定之后, 循环次数主要取决于DNA浓度。一般而言25-30轮循环已经足够。循环次数过多,会使PCR产物中非特异性产物大量增加。通常经25-30轮循环扩增后, 反应中Taq DNA聚合酶已经不足, 如果此时产物量仍不够, 需要进一步扩增, 可将扩增的DNA样品稀释103-105倍作为模板, 重新加入各种反应底物进行扩增, 这样经60轮循环后, 扩增水平可达109-1010 。
扩增产物的量还与扩增效率有关,扩增产物的量可用下列公式表示:C=C0 (1+P)n 。其中:C为扩增产物量,C0 为起始DNA量, P为增效率, n为循环次数。
在扩增后期,由于产物积累,使原来呈指数扩增的反应变成平坦的曲线,产物不再随循环数而明显上升,这称为平台效应。平台期会使原先由于错配而产生的低浓度非特异性产物继续大量扩增,达到较高水平。因此,应适当调节循环次数,在平台期前结束反应, 减少非特异性产物。
三、PCR产物的克隆
在许多研究中,需要将PCR产物克隆,以获得目的DNA片段。此时,所用PCR循环数应尽量小,以减少平台效应或非特异性扩增产物的干扰。通常将PCR产物插入到载体中有下列一些方法。
1、 平末端连接:由于Taq DNA聚合酶往往在PCR产物3'端加上多余的非模板依赖碱基,在用平末端连接克隆PCR产物前,可用Klenow片段或T4 DNA聚合酶处理补平末端。
2、在PCR产物尾部加dT或ddT:Taq DNA聚合酶会在3'端加上多余的非模板依赖碱基,而且对A优先聚合,所以PCR产物末端的多余碱基大部分都是A.。利用这一特点,可以经限制酶切割产生的平末端用酶加上dT或ddT,使载体与PCR产物末端互补并进行连接.载体末端加dT尾可直接用Taq DNA聚合酶和dTTP或ddTTP,ddTTP因缺少3-OH而不能再形成磷酸二酯键,保证在载体3'端只加上一个ddTTP,而其5'端所含的磷酸基团可与PCR产物的3'端OH连接,连接产物在载体和PCR产物之间的双链上带两个切口,这种重组DNA仍可转化合适的受体菌,并在细菌体内修复.目前一些公司已开发出可直接用于克隆PCR产物的带3'-T的T-Vector。
3、粘性末端连接:利用引物中附加在5'端的限制酶位点,直接将PCR产物经适当的限制酶切割后产生粘性末端,与载体连接,产生重组DNA.如果下游两个引物中含有两个不同的限制酶位点.经酶切后定向克隆到载体中。
国家药典委关于1001聚合酶链式反应法标准草案的公示。我委拟修订《中国药典》1001聚合酶链式反应法。为确保标准的科学性、合理性和适用性,现将拟修订的1001聚合酶链式反应法公示征求社会各界意见(详见......
国家药典委关于1001聚合酶链式反应法标准草案的公示。我委拟修订《中国药典》1001聚合酶链式反应法。为确保标准的科学性、合理性和适用性,现将拟修订的1001聚合酶链式反应法公示征求社会各界意见(详见......
我们的DNA不是坚不可摧的。在我们的一生中,DNA会因自然和环境因素而断裂。值得庆幸的是,我们的身体有专门的酶和途径,可以通过几种不同的机制将破碎的DNA粘合在一起,这些机制被称为DNA修复途径。然而......
图镜像T7RNA聚合酶示意图及镜像核糖体RNA转录胶图在国家自然科学基金项目(批准号:21925702、32050178)资助下,清华大学朱听教授团队在全化学合成高保真镜像T7RNA聚合酶以及转录制备......
什么是LAMP?环介导等温扩增(Loop-mediatedisothermalamplification,LAMP)是Notomi等人于2000年提出来的一种新的核酸扩增技术。针对靶基因的6个区域设计......
转座子(transposon)最早由美国遗传学家BarbaraMcClintock在玉米中发现,在细菌、病毒以及真核生物的基因组中广泛分布。转座子类似内源性病毒,能够在宿主基因组中“复制和粘贴”自己的......
从细胞最基本的各种功能原件开始,进而精确认识其动态工作机理,是认识生命、有效干预生命过程的第一步。随着冷冻电镜技术的发展,蛋白质静态晶体结构可高效获取,为突破生命科学认知局限提供便利。解析蛋白质分子内......
人们知道,细胞可以将DNA复制成一组新的DNA,然后进入一个新形成的细胞。其中,涉及一类被称为聚合酶的细胞“机器”,它们也可以构建RNA信息,这些从DNA中心库复制的信息可以被更有效地“解读”为蛋白质......
RNA病毒编码的依赖RNA的RNA聚合酶(RNA-dependentRNApolymerase,简称RdRP)是一类独特的核酸聚合酶,在病毒基因组复制和转录过程中发挥核心作用,是抗病毒药物研究的热点靶......
近日,“上海科技大学—清华大学抗新冠病毒联合攻关团队”率先在国际上成功解析新型冠状病毒“RdRp(RNA依赖的RNA聚合酶)-nsp7-nsp8复合物”近原子分辨率的三维空间结构,揭示了该病毒遗传物质......