最近,来自加拿大著名学府——麦吉尔大学,蒙特利尔大学和蒙特利尔工学院的研究者们经过合作,在癌症治疗领域取得了一项重大突破。他们研制出一款纳米机器人,可以在人体血管内运行,精准地锁定癌细胞并投递药物。这是目前世界上最先进的药物投放系统,因为它完全不会损伤正常人体组织和器官;此外这意味着病人可以大大减少要服用的药物剂量,从而减少这些药物带来的副作用。
根据蒙特利尔工学院纳米机器人研究中心项目负责人,Sylvain Martel教授所言,每一个纳米机器人携带不少于一亿数量的细菌,每个细菌都生有鞭毛并且能自我推进,它们携带充足的药物,进入人体后就开始寻找需要药物治疗的部位。并且,药物受到的推动力都能让它们深入肿瘤内部,有效瓦解肿瘤。
这个过程,具体说来就是,一旦纳米机器人进入肿瘤,它们会开始搜寻那些氧气被耗尽的地方,就是“缺氧区”,然后把药物送达那里。肿瘤细胞的快速增殖需要消耗大量氧气,从而制造出“缺氧区”,也就是肿瘤细胞的活跃和聚集地。直到现在,这些“缺氧区”都能抵制主要的治疗手段,包括放射疗法。所以Martel教授才会考虑到用纳米技术做出尝试。
那么,为什么纳米机器人上的细菌具有自我推动力并能进入肿瘤内部呢?首先,它们的运动是通过纳米粒子制造的磁场产生的,会因为磁力吸引作用而快速移动;其次它们会通过一个“氧气浓度测量感应器”而发现肿瘤内部的活跃区域(即癌细胞增殖区域)并且留在那里。一旦我们能通过计算机控制磁场的产生,就可以控制这些细菌的去向并让它们发挥作用了。
该纳米机器人的研发小组认为,随着纳米机器人投入应用,更为先进的干预治疗手段也会被发现。大家都知道,化疗和手术、放疗一样,是治疗癌症的三大手段之一,但是由于化疗药物的选择性不强,在杀灭癌细胞的同时也会不可避免地损伤人体正常的细胞,从而产生严重的副作用。而纳米机器人的产生,可以帮助化学药物精准投放到需要杀死的细胞处,从而降低乃至消除化疗的副作用,还能提高这种治疗手段的效率!
目前这一项目研究成果已经发表在专业期刊《自然纳米技术》(《Nature Nanotechnology》)上,标题为“Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.”,即“磁力控制的趋氧细菌把含有治疗药物的纳米脂质体投放到肿瘤缺氧区”,具体阐述了研究成果和纳米技术在治疗肿瘤领域取得的成功。感兴趣的小伙伴可以查到并阅读这一论文。
据10日发表在《细胞·报告医学》期刊上的一项最新研究,美国马萨诸塞大学阿默斯特分校团队开发出一种预防动物癌症的纳米疫苗,在预防小鼠黑色素瘤、胰腺癌和三阴性乳腺癌方面表现出显著效果。接种该疫苗的小鼠中,......
国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......
6月24日,记者从哈尔滨工业大学获悉,该校科研团队在脑胶质瘤精准治疗领域取得重要进展。团队创造性研发出“特洛伊纳米机器人”,成功在肿瘤模型小鼠身上穿越血脑屏障,将药物主动靶向输送至胶质瘤病灶中心区域,......
巴西奥斯瓦尔多克鲁兹基金会研究人员发现了纳米粒子有效抑制癌细胞发展的相关机理,即纳米粒子能有效抑制癌细胞增殖,也能阻止肿瘤向其他器官转移。相关论文发表在最新一期《癌症纳米技术》上。研究人员将患有乳腺癌......
在与癌症的博弈中,胰腺导管腺癌(PDAC)始终是难以攻克的堡垒,其五年生存率不足10%,素有“癌王”之称。传统研究聚焦于基因突变与免疫逃逸,却忽视了肿瘤微环境中一个隐秘的“共谋者”——周围神经系统。2......
德国斯图加特大学第二物理研究所领导的团队开发出可改造人造细胞的DNA纳米机器人。这一创新技术能控制合成细胞中脂质膜的形状和通透性,为合成生物学发展提供了全新工具。相关成果发表在最新一期《自然·材料》杂......
英国诺丁汉大学药学院的科学家在研究一种由毛虫真菌产生的化学物质方面取得了新进展。这一成果已发表在《FEBS快报》上。研究表明,这种化学物质能够与基因相互作用,从而阻断癌细胞的生长信号,为开发新的抗癌药......
人类细胞中的蛋白质工厂远比我们想象的要复杂多样。荷兰癌研所科学家证实,癌细胞可利用这些核糖体来增强它们的“隐形”能力,从而躲避免疫系统的追踪。相关论文21日发表在《细胞》杂志上。这一发现改变了人们对核......
拓扑异构酶I(TOP1,TopoisomeraseI)是一种能促使DNA放松并预防和消除转录过程中扭转应力(torsionalstress)的重要酶类,然而,调节TOP1酶类活性背后的机制,目前研究人......
禁食与一系列健康益处有关。禁食信号如何引起蛋白质组的变化以建立代谢程序仍然知之甚少。2024年8月15日,加州大学旧金山分校DavideRuggero团队(博士后杨浩君为论文第一作者)在Nature在......