发布时间:2011-09-16 09:03 原文链接: 英制造出基于无机物的类似生命细胞

  据英国《新科学家》杂志网站9月14日报道,英国科学家用含有金属的巨型分子,成功地制造出了类似于细胞的气泡,并赋予它们一些类似生命的特征。研究人员希望诱使这些气泡演变成完全无机的能自我复制的实体,以此证明存在着完全基于金属(无机物)的生命。相关研究发表在最新一期德文版《应用化学》杂志上。

  格拉斯哥大学的李·克罗宁通过将由钨(占大多数)和其他金属原子、氧、磷结合形成的多金属氧酸盐简单地在溶液中混合,让其自我组装成了像细胞一样的球体,并将得到的气泡称为无机化学细胞(iCHELLs)。他还通过修改其金属氧化物骨架,让其拥有了一些天然细胞膜的特征,比如,能有选择性地让不同大小的化学物质进出细胞膜,以此控制细胞内可发生何种化学反应(这是特定细胞的一个关键特征)。

  克罗宁团队还在气泡内创建出了模拟生物细胞内部结构的分隔。更妙的是,他们已开始朝气泡填充设备,通过让一些氧化物分子与感光染料结合来进行光合作用。克罗宁说,早期的研究结果表明,他能制造出一个膜,其受到光照时,可将水分解成氢离子、电子和氧,这是光合作用的第一步。克罗宁表示:“也有迹象表明,我们可以激发质子穿过该细胞膜以建立一个质子梯度,这是利用太阳能的另一个关键阶段。如果能将所有步骤有效地整合在一起,我们就能创造出一种带有类似植物代谢成分的自供电细胞。”

  克罗宁早在去年就已证明,可让多金属氧酸盐彼此互为基质来实现自我复制。他现在正大规模地制造气泡,并将其注入装满了酸碱度不同的物质的试管和烧瓶阵列中。他希望这种混合环境将只使最适合的气泡生存。他表示,从长远来看,真正的考验是细胞能否修改自己的化学性质从而适应不同的环境。克罗宁暗示,他的最新研究能证明这一点,他们最新展示的就是第一个可以进化的气泡。

  目前,该研究还处于初级阶段,其他合成生物学家对此持保留意见。西班牙瓦伦西亚大学的曼努埃尔·泡卡指出,克罗宁的气泡永不会成为像生命一样的物质,除非它们能携带类似DNA(脱氧核糖核酸)的物质以实现自我复制和进化。

  如果克罗宁的研究得到证实,那么存在外星生命的可能性将大大提高。日本东京大学基础科学系的牟中原说:“很可能存在着一些并不基于碳的外星生命。比如,水星上的物质就和地球上的物质大相径庭,可能存在由无机成分形成的生物。尽管克罗宁暂时还无法证明这一点,但他指出了一个新方向。”

相关文章

“哨兵”兼“战士”:植物细胞膜上的守护者

植物大战病原菌的“军备竞赛”中,细胞膜识别受体作为监控病原菌入侵的“前哨”,能够激活植物体内多层次的防卫系统,产生对病原菌的抗性。自1994年在国际上被首次鉴定以来,它作为抗病受体一直是科学家关注的焦......

《自然》发文,人工细胞膜问世

据发表在最新一期《自然·通讯》杂志上的一项研究,韩国科学技术研究院(KIST)脑科学研究所团队成功开发出一种可在硅衬底上保持稳定超过50天的人工细胞膜。这是模拟薄膜结构的人工细胞领域取得的新成就,可按......

持续稳定五十天的人工细胞膜问世

据发表在最新一期《自然·通讯》杂志上的一项研究,韩国科学技术研究院(KIST)脑科学研究所团队成功开发出一种可在硅衬底上保持稳定超过50天的人工细胞膜。这是模拟薄膜结构的人工细胞领域取得的新成就,可按......

编程DNA机器人可刺激细胞膜

科学家找到了一种方法让DNA与人体内的细胞膜进行交流,为在脂质体中制造“微型生物计算机”铺平了道路,这种计算机在生物传感和mRNA疫苗中有潜在的用途。澳大利亚新南威尔士大学的MatthewBaker和......

我国科学家解析眼病相关离子通道高清结构

细胞膜离子通道对维持细胞正常生理功能有重要作用。当离子通道失调或突变时,心脏病、癌症、失明等疾病都有可能发生。最近,武汉大学人民医院教授沉吟课题组与合作者首次解析了一个与多种眼科疾病密切相关的离子通道......

我国学者揭示植物细胞膜上3羟基脂肪酸免疫通路

假单胞菌属是一类非常重要的细菌病害,该属内的铜绿假单胞菌作为机会致病菌,可以侵染动物和人。而侵染植物的丁香假单胞菌位列十大植物病原细菌之首,可以侵染番茄等作物,造成严重的经济损失。2020年1月10日......

中国传统美食让“细菌耐药性”不再是困扰

日前,天津大学陈海霞教授的天然药物化学团队从我国传统美食“腊八蒜”中首次发现三种新型活性肽,这些活性肽具有显著抑菌性,有望成为抗生素替代品。相关成果已作为国际著名科学期刊《食品功能》封面文章发表。抗生......

爱舔油的癌细胞!竟利用皮脂脂肪酸为原料合成细胞膜

炎炎夏日马上就要来了。让各位操心的不仅有腰上的小肥肉,还有那一晒就往外冒油、让人讨厌的油性皮肤。皮脂腺生产的油脂,虽然让人讨厌,但奇点糕万万没想到,癌细胞却很喜欢这种生产油脂的方式。近日,比利时Sar......

Science:扁菱形蛋白酶打破穿过细胞膜时的“细胞速度限制”

在一项新的研究中,来自美国约翰霍普金斯大学的研究人员发现作为切割其他蛋白的特殊蛋白,扁菱形蛋白酶(rhomboidprotease)能够在它们穿过细胞膜时打破“细胞速度限制”。扁菱形蛋白酶通过扭曲它们......

《Science》高科技:观察细胞膜的新方法

牛津大学和帝国理工学院与国际同行们合作开发了一种原位分析细胞膜蛋白的新技术。这项技术可极大改善我们对细胞膜复合物的理解。发表在《Science》杂志的这项研究使得质谱学在生物学领域达到了一个新应用水平......