发布时间:2021-12-20 12:25 原文链接: 血凝分析仪的发展概况及原理

  发展概况

  1910年Kottman发明了世界上最聚早的血凝仪,通过测定血液凝固时的粘度的变化来反应血浆凝固的时间。

  1922年,Kugelmass用浊度计通过测定透射光的变化来反应血浆凝固时间。

  1950年,Schnitger和Gross发明了基于电流法的血凝仪。

  60年代,机械法血凝仪得到开发。

  70年代以后,由于机械、电子工业的发展,使各种类型的全自动血凝仪先后问世。

  80年代,由于发色底物的出现并应用于血液凝固的检测,使全自动血凝仪除了可以进行一般的筛选试验外,尚可以进行凝血、抗凝、纤维蛋白溶解系统单个因子的检测。

  80年代末,双磁路磁珠法的发明给血栓与止血的检测带来新概念,由于其独特的设计原理,使光学法检测的一些影响因素在本类型的检测仪器上均不复存在。

  90年代,全自动血凝仪免疫通道的开发又为血栓与止血的检测提供了新的手段。

  基本原理

   目前可开展的血栓/止血成份检测方法,主要方法有凝固法、底物显色法、免疫法、乳胶凝集法等。在表中可注意到,在血栓/止血检验中最常用的凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、纤维蛋白原(FIB)、凝血酶时间(TT)、内源凝血因子、外源凝血因子、高分子量肝素、低分子量肝素、蛋白C、蛋白S等均可用凝固法测量。所以目前半自动血凝仪基本上都是以凝固法测量为主,而在全自动血凝仪中也一定有凝固法测量。

   凝固法中又可分为光学法和磁珠法两类。由于光学法几乎可涵盖各种检测方法,为了降低仪器制造成本,全自动血凝仪以光学法居多。但也有少数高级全自动血凝仪中凝固法测量采用无样品干扰的双磁路磁珠法,而其它测量采用光学法,并可同时进行检测。

  血栓/止血成份检测方法

   (一) 凝固法(生物物理法)

   凝固法是通过检测血浆在凝血激活剂作用下的一系列物理量的变化(光、电、机械运动等),由计算机分析所得数据并将之换算成最终结果,所以也可将其称作生物物理法。

   1. 电流法

   电流法利用纤维蛋白原无导电性而纤维蛋白具有导电性的特点,将待测样品作为电路的一部分,根据凝血过程中电路电流的变化来判断纤维蛋白的形成。

  由于该电流法的不可靠性及单一性,很快被更灵敏、更易扩展的光学法所淘汰。

   2. 光学法(比浊法)

   光学式血凝仪是根据凝固过程中浊度的变化来测定凝血的。根据不同的光学测量原理,又可分为散射比浊法和透射比浊法两类。

   (1)散射比浊法:散射比浊法是根据待验样品在凝固过程中散射光的变化来确定检测终点的。在该方法中检测通道的单色光源与光探测器呈90°直角,当向样品中加入凝血激活剂后,随着样品中纤维蛋白凝块的形成过程,样品的散射光强度逐步增加,仪器把这种光学变化描绘成凝固曲线,当样品完全凝固以后,散射光的强度不再变化。通常是把凝固的起始点作为0%,凝固终点作为100%,把50%作为凝固时间。光探测器接收这一光的变化,将其转化为电信号,经过放大再被传送到监测器上进行处理,描出凝固曲线。当测定含有干扰物(高脂血症、黄疸和溶血)或低纤维蛋白原血症的特殊样本时,由于本底浊度的存在,其作为起始点0%的基线会随之上移或下移,仪器在数据处理过程中用本底扣除的方法来减少了这类标本对测定的影响。但是这是以牺牲有效信号的动态范围为代价的,对于高浊度标本并不能有效解决问题。

   (2)透射比浊法:透射比浊法是根据待测样品在凝固过程中吸光度的变化来确定凝固终点。与散射比浊法不同的是该方法的光路同一般的比色法一样呈直线安排:来自光源的光线经过处理后变成平行光,透过待测样品后照射到光电管变成电信号,经过放大后在监测器处理。当向样品中加入凝血激活剂后,开始的吸光度非常弱,随着反应管中纤维蛋白凝块的形成,标本吸光度也逐渐增强,当凝块完全形成后,吸光度趋于恒定。血凝仪可以自动描记吸光度的变化并绘制曲线,设定其中某一点对应的时间为凝固时间。

   就浊度测量原理而言,散射比浊法更为合理、准确。在这类仪器中,光源、样品、接收器成直角排列,接收器得到的完全是浊度测量所需的散射光。

   而在透射比浊法中,光源、样品、接收器成一直线排列,接收器得到的是很强的透射光和较弱的散射光,前者是有效成份,后者应扣除,所以要进行信号校正,并按经验公式换算到散射浊度。此法虽仪器简单,但精度较差。

   3 . 双磁路磁珠法

   早期的是在检测杯中放一粒磁珠,与杯外一根铁磁金属杆紧贴呈直线状,标本凝固后,由于纤维蛋白的形成,使磁珠移位而偏离金属杆,仪器据此检测出凝固终点。这类仪器也可称为平面磁珠法。早期的平面磁珠法虽能有效克服光学法中样品本底干扰的问题,但也存在着灵敏度低等问题。

  现代磁珠法在八十年代末提出、九十年代初商品化。现代磁珠法曾形象地称为摆动磁珠法,不过双磁路磁珠法的名称更为确切。

   双磁路磁珠法的测试原理:测试杯两侧的有一组驱动线圈,它们产生恒定的交替电磁场,使测试杯内特制的去磁小钢珠保持等幅振荡运动。凝血激活剂加入后,随着纤维蛋白的产生增多,血浆的粘稠度增加,小钢珠的运动振幅逐渐减弱,仪器根据另一组测量线圈感应到小钢珠运动的变化,当运动幅度衰减到50%时确定凝固终点。

   双磁路磁珠法进行凝血测试,完全不受溶血、黄疸及高血脂症的影响,甚至加样中产生气泡也不会影响测试结果。

   光学法血凝仪的试剂用量只有手工测量的一半。而磁珠法的试剂用量只有光学法的一半!这是因为在比浊测定过程中,激发光束必须打在测试杯的中间,所以要有足够的试剂量。在双磁路磁珠法测量中,钢珠在测试杯的底部运动,因此试剂只要覆盖钢珠运动即可。

   双磁路磁珠法中的测试杯和钢珠都是ZL技术,有特殊要求。测试杯底部的弧线设计与磁路相关,直接影响测试灵敏度。小钢珠经过多道工艺特殊处理,完全去掉磁性。在使用过程中,加珠器应远离磁场,避免钢珠磁化。为了保证测量的正确性,钢珠应当一次性使用。

   血凝仪的测量过程中,充分搅拌至关重要,这对于凝血过程的描述和凝固终点的判断都会有很大帮助,CV会有很大改进。在仪器中常用磁珠搅拌或离心方式来达到目的。现在有相当一部分光学式半自动血凝仪采用磁珠搅拌。有人误以为这就是磁珠法。实际上,以测量吸光度变化来研究凝血过程的,其实质都属于光学比浊法。例如“光电磁珠法”、“光电电磁法”等,都回避不了光学法的缺陷。

   如果把测试杯用墨涂黑,那么在磁珠法血凝仪中仍可测量,而在光学法血凝仪则是“一团漆黑”,无法测量了。至此,也就容易理解为何双磁路磁珠法样品的黄疸、溶血等混浊的影响。

  由于磁珠法中测量的是磁电信号,对测试杯无任何光学要求,所以测试杯可反复清洗使用。而光学比浊法中,测试杯不能有擦痕,一般不宜重复使用。

   (二)底物显色法(生物化学法)

   底物显色法通过测定产色底物的吸光度变化来推测所测物质的含量和活性的,该方法又可称为生物化学法。检测通道由一个卤素灯为检测光源,波长一般为405nm。探测器与光源呈直线,与比色计相仿。

   凝血仪使用产色底物检测血栓与止血指标的原理是:通过人工合成与天然凝血因子有相似的一段氨基酸排列顺序并还有特定作用位点的小肽,并将可水解产色的化学基因与作用位点的氨基酸相连。测定时由于凝血因子具有蛋白不解酶的活性,它不仅作用于天然蛋白质肽链,也能作用于人工合成的肽段底物,从而释放出产色基因,使溶液呈色。产生颜色的深浅与凝血因子活性成比例关系,故可进行精确的定量。目前人工合成的多肽底物有几十种,而最常用的是对硝基苯胺(PNA),呈黄色,可用405mm波长进行测定。

   底物显色法灵敏度高、精密度好,而且易于自动化,为血栓/止血检测开辟了新途径。

   底物显色法通常使用以下三种形式:

   a) 先将被检血浆中的某种酶加以激活,然后由此活化的凝血因子对人工合成的底物进行水解而呈色,如纤溶酶原,蛋白C测定等。

   b) 向被检血浆中加入过量的有关试剂,以中和相应的抗凝因子,然后测定其残余的酶活性,如AT-活性测定,α2-抗纤溶酶测定,肝素测定等。

   以测定抗凝血酶Ⅲ(AT-Ⅲ)为例,在反应体系中加入过量的凝血酶,后者与血浆中的AT-Ⅲ形成1:1复合物,剩余凝血酶作用于合成的凝血酶底物S-2238(H-D-Phe-Pip-Arg-PNA·2Hcl),释放出显色基团PNA,显色反应的深浅与剩余凝血酶的量呈正相关,而与AT-Ⅲ的活性呈负相关。

   c) 直接测定被检血浆中某种蛋白水解酶的活性,如凝血酶,Xa,尿激酶测定等。

   (三)免疫学方法

   在免疫学方法中以纯化的被检物质为抗原,制备相应的抗体,然后用抗原抗体反应对被检物进行定性和定量测定。

   常用方法有:

   1.免疫扩散法 将被检物与相应抗体在一定的介质中结合,测定其沉淀环的大小,与标准进行比较,计算待测物的浓度。此法操作简单,不需特殊设备,但耗时过长,且灵敏度不高,仅适于含量较高的凝血因子的检测。

   2. 火箭电泳 在一定电场中,凝胶支持物内的被检测与其相应抗体结合形成的一个个“火箭峰”,火箭峰的高度与其含量成正比,通过测定峰高并与标准比较而进行定量测定。此法操作复杂,临床应用较少。

   3.双向免疫电泳 通过水平与垂直两个方向进行电泳可将某些分子结构异常的凝血因子进行分离。

   4. 酶联免疫吸附试验(ELISA法)用酶标抗原或抗体和被检物进行抗原结合反应,经过洗涤除去未结合的抗原或抗体及标本中的干扰物质,留下固定在管壁的抗原抗体复合物,然后加入酶的底物和色原性物质,反应产生有色物质,用酶标仪进行测定,颜色的深浅与被检物浓度呈比例关系。该法灵敏度高,特异强,目前已用于许多止血、血栓成分的检测。

   5.免疫比浊法 将被检物与其相应抗体混合形成复合物,从而产生足够大的沉淀颗粒,通过透射比浊或散射比浊进行测定。此法操作简便,准确性好,便于自动化。

   免疫比浊法可分为直接浊度法分析和乳胶比浊法分析。直接浊度分析既可通过透射比浊,也可通过散射比浊。

  透射比浊是指凝血仪光源的光线通过待检样本时,由于待检样本中的抗原与其对应的抗体反应形成抗原-抗体复合物,使透过的光强度减弱,其减弱程度与抗原量成一定的数量关系,通过这一点可从透过光强度的变化来求得抗原的量。

   散射比浊法指凝血仪光源的光通过待测样本时,由于其中的抗原与特异的抗体形成抗原-抗体复合物,使溶质颗粒增大,光散射增强。散射光强度的变化与抗原的量呈一定的数量关系,通过这一点可从散射光强度的变化来求得抗原含量。

   另一种是乳胶比浊法,即将将待检物质相对应的抗体包被在直径为15~60nm的乳胶颗粒上,然后与被检物结合,形成抗原抗体的复合物的乳胶颗粒凝集,体积增大,使透射光和散射光的变化更为显著,从而提高实验的灵敏性。用仪器或肉眼进行定量或半定量分析。目前,多用于FDP和D-二聚体的检测。

相关文章

血凝分析仪的简介

血凝分析仪适用于各级医院。产品性能: 血凝分析仪采用光学比色法测量技术,结构上采用先进ZL结构,使仪器产品技术性能达到国外同类产品水平。1910年Kottman发明了世界上最聚早的血凝仪,通......

光电磁珠法半自动血凝分析仪

  血凝分析仪的发明史已有100多年,最早时采用的测量原理是靠测定血液凝固时粘度的变化来测定血浆凝固时间,发展到现在,检测方法已经发展为多种,比较出名的是电流法、光学法和磁珠法,其......

哪些因素可影响血凝分析仪检测结果

血凝分析仪,即血液凝固分析仪,是对血栓和止血进行实验室检查的医疗器械。止血与血栓分子标志物的检测指标与临床各种疾患有着密切联系,如动脉粥样硬化,心脑血管疾病、糖尿病、动静脉血栓形成,血栓闭塞性脉管炎、......

血凝分析仪检测结果的影响因素有哪些

        血凝分析仪的检测结果受许多其他方面因素的影响,我们从机器和试剂两个方面来说明。1、机器方面①机器与电源连......

血凝分析仪的凝血酶原时间是指什么?

血凝分析仪的凝血酶原时间是指什么?这个检测项目有什么意义?  血凝分析仪是用于检测血液各项指标凝血功能的设备,一般常用于手术前的检查,避免因患者在术中因为止血功能不完善而引起的大出......

血凝分析仪操作注意事项及分类

  血凝分析仪在凝血检测中是必备的。但是,操作者对仪器错误的操作不单单损坏了仪器,并且对患者的检测结果也带来了影响。因此,为了确保仪器的正常运行,我们的操作人员在对血凝仪的使用过程......

半自动血凝分析仪与全自动血凝分析仪的区别

随着科技的发展进步,许多的医疗器械在不断进行着更新换代,仪器的类型也呈现多样化,不例外的,血凝分析仪也有全自动和半自动两种类型,它们在结构上存在一定的区别。首先,全自动型血凝分析仪。其基本构成包括:样......

血凝分析仪操作步骤

    血凝分析仪用于临床上测量人体血液中各种成分含量,是各级医院常规检测仪器之一,今天为大家介绍一下血凝分析仪的操作步骤。   ......

血凝分析仪使用注意事项

  血凝分析仪的主要作用是对血栓、止血、出血性疾病等进行实验室检查,它的检测速度快,高效,检验结果的可靠性与准确性得到保障。   血凝分析仪作为血凝功......

通过哪些方面判断血凝分析仪质量好坏?

如今血凝分析仪在我国的使用已经非常广泛,该医疗设备已成为检验科必备设备之一。大量的检查量对血凝分析仪质量提出了巨大挑战,如购买到质量不过关产品将对检查造成很大困扰。下面普朗小编就教教大家,通过哪些方面......