发布时间:2020-07-07 00:33 原文链接: 质膜Ca2+转运体调节病毒诱导的抗性对氧化胁迫的忍耐

植物经历了某种逆境后,能提高对另一种逆境的抵抗能力,这种对不良环境之间的相互忍耐作用称为交叉忍耐(Cross-tolerance)。例如UV处理烟草提高了对花叶病毒的忍耐,臭氧处理拟南芥引起了对Pseudomonas syringae病毒的抵抗力。在这些研究中,诱导的交叉忍耐主要由ROS产生,与氧化爆发期间快速释放H2O2,以及与植物对无毒的病原反应有关。ROS可能作为信使激活防御基因的表达,但是在这个过程中Ca2+信号转导的作用不清楚。

2011年2月,澳大利亚的Shabala等人报道了对植物氧化胁迫获得性的交叉忍耐现象,研究了Ca2+转运系统的活性如何调节这种现象。烟草感染了马铃薯病毒X(Potato virus X, PVX),暴露在氧化(UV-C或者H2O2)胁迫中,用非损伤微测技术(MIFE)测定了Ca2+和K+流速,结合药理学和细胞学方法研究了植物整体的适应性反应,发现病毒感染后植物能够更好地应对UV和H2O2,阻止叶绿体结构和功能的损伤。Ca2+流是植物对病原入侵的早期反应,Ca2+的传递和ROS可能是控制细胞水平交叉忍耐的关键。

这项研究说明在UV和病原诱导的氧化胁迫之间有一个高度的交叉,以及在植物对氧化胁迫获得性的忍耐中Ca2+外流系统的重要作用,重新提出了病毒可能有益于植物抗逆的争论。在大田中,不同的胁迫一起出现很常见,病毒增加胁迫忍耐可能对农业的发展有重要意义。


关键词:非损伤微测技术(MIFE),Ca2+/H+交换体,Ca2+泵,叶绿体,叶肉,马铃薯病毒X(Potato virus X, PVX),紫外线辐射(UV irradiation)


相关文章

Nature:柳振峰团队发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传...

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有其自身的基因组,其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

研究发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

柳振峰课题组等发现叶绿体蛋白质传送器的组装原理

叶绿体是植物和藻类细胞中可以通过光合作用将光能转化为化学能的细胞器。作为一种由两层膜包被的特殊细胞器,叶绿体含有自身的基因组,且其表达是与核基因组的表达紧密协调的。叶绿体的蛋白质有两种来源,有一小部分......

榕属叶绿体基因组比较研究获进展

近年来,叶绿体基因组因基因组小、突变率和重组率低的特点,被广泛用于植物系统发育、分子进化、谱系地理学的研究。榕属(Ficus)作为桑科的最大属,且是热带雨林的关键物种,而其系统发育关系仍需进一步研究。......

科学家破解叶绿体“守门人”之谜

11月21日,西湖大学特聘研究员闫浈实验室在《细胞》杂志发表研究论文,揭开了叶绿体蛋白转运之谜——蛋白进入叶绿体需要经过TOC-TIC复合物,如同穿过“工厂大门”,他们首次解析了TOC-TIC复合物的......

研究揭示叶绿体稳定性调控水稻产量和品质新机制

 叶绿体发育调控模块  中国农科院供图近日,中国水稻研究所水稻功能基因组学创新团队研究揭示,一个富含甘氨酸的蛋白LSL1参与调控叶绿体氧化还原稳态机制,进而影响水稻的产量......

研究团队揭示叶绿体蛋白转运与质量控制的新机制

叶绿体是光合作用的场所,也是重要的生物反应器。作为半自主细胞器,叶绿体含有3000多个蛋白,其自身基因组仅编码100个左右蛋白,其他蛋白由核基因组编码并通过叶绿体被膜上的TOC和TIC复合体转运。大部......

科学家揭示叶绿体蛋白质量控制新机制

近日,中国科学院植物研究所研究员林荣呈等揭示了叶绿体蛋白质量控制的新机制,发现CDC48复合体可以通过泛素化蛋白酶体途径介导叶绿体内RbcL和AtpB蛋白的降解。相关研究成果发表于《细胞通讯》。叶绿体......