发布时间:2024-03-19 17:54 原文链接: 运用可解释机器学习成功破解催化结构敏感性难题

李微雪教授结合物理启发的可解释机器学习算法与第一性原理计算,解决了一个多相催化研究中长期存在的关于催化结构敏感性难题。研究成果近日发表于《美国化学会》期刊。

催化反应活性位及其结构敏感性是多相催化研究中最为重要的基本概念之一。尽管近年来研究取得了很大进展,但由于影响因素众多并横跨多个空间和时间尺度,如何在原子尺度上确定催化反应的活性位及其结构敏感性,依然是催化材料理性设计中所面临的一大挑战。

机器学习方法在多相催化研究中发挥着日益重要的作用,并被应用到催化剂的结构敏感性研究中。但迄今为止大多数研究都属于端到端的“黑盒子”研究,研究结果缺乏很好的物理可解释性。物理上具有清晰的可解释性,明确包含催化剂的几何结构和化学组分,并能准确预测催化反应能垒的解析关系,目前仍然亟待建立。另外,由于催化反应能垒的计算主要通过高精度、高成本的密度泛函理论来完成,系统的理论数据也较为匮乏。因此,经常需要参考不同的数据源,数据源的多样性所带来的挑战也需要采取合适的机器学习算法。

针对上述问题,研究人员基于物理启发的可解释多任务学习符号回归和包含多样性的第一性原理计算数据集,在领域知识和化学直觉的基础上,建立了一个简洁、物理图像清晰的描述符。该描述符由催化剂的结构项和催化反应的能量项两部分组成,可用于准确预测各种分子在不同组分和结构金属催化剂上的活化能垒。其中,新建立的结构项由催化剂的拓扑配位不饱和度、价电子和晶格常数三个变量组成,借此成功破解了金属催化剂的结构敏感性问题,并突显了数据驱动理论模型的透明度,即“白盒子”研究在构建催化物理模型方面的重要性。


相关文章

固态纳米孔结合机器学习对抗衰寡肽的单分子分析取得进展

抗衰商品中的寡肽作为活性成分与皮肤细胞相互作用,加速胶原合成和纤维细胞增殖。寡肽活性成分一些是神经递质或酶抑制剂,另一些是信号肽或载体肽。研究对不同寡肽结构建立单分子特征分析方法,应用于市面不同抗衰产......

科学家基于机器学习研发超高饱和磁感铁基非晶/纳米晶软磁材料

随着高频大功率器件快速发展,系统能耗问题成为制约行业发展的瓶颈。若将电子控制系统比作人体,芯片如同大脑承担核心控制功能,负责数据处理、信号控制和逻辑运算等任务;而电感、变压器等磁性元器件则相当于执行各......

人工智能和机器学习解决方案将如何加速细胞和基因治疗领域创新

引言:“大鹏一日同风起,扶摇直上九万里。”细胞和基因治疗(CGT)领域在过去几年中取得了显著进步,其管线和批准产品的数量急剧增加。然而CGT市场仍然面临许多挑战,这些挑战阻碍了其增长并延迟了这些疗法的......

诺贝尔物理学奖:推动机器学习技术“爆炸式”发展

还记得那个横空出世即一路“狂飙”的ChatGPT吗?2023年以来,人工智能(AI)“百模大战”从硝烟燃起到全面打响,让人应接不暇。而AI模型背后的关键技术,正是机器学习。10月8日,瑞典皇家科学院宣......

诺贝尔物理学奖为何授予机器学习?

·辛顿开发的玻尔兹曼机成为了生成模型的早期例子。玻尔兹曼机常被用作一个大网络的一部分,可以用来根据观众的喜好推荐电影或电视剧。·机器学习与传统软件不同,传统软件的工作方式就像一种配方。传统软件接收数据......

科研人员利用机器学习方法解码原子核壳演化

近日,中国科学院近代物理研究所核物理中心吕冰锋副研究员和湖州师范学院王永佳教授等利用机器学习方法研究原子核低位激发态的能量和电磁跃迁几率,在探索原子核壳演化研究中取得重要进展。相关成果于9月10发表在......

运用可解释机器学习成功破解催化结构敏感性难题

李微雪教授结合物理启发的可解释机器学习算法与第一性原理计算,解决了一个多相催化研究中长期存在的关于催化结构敏感性难题。研究成果近日发表于《美国化学会》期刊。催化反应活性位及其结构敏感性是多相催化研究中......

美国开发出可加速材料创新的机器学习模型

美国罗切斯特大学科研人员开发出一个机器学习模型,可对X射线衍射(XRD)实验产生的大量数据进行分析以加速材料创新。科研人员利用涵盖了不同实验条件和晶体特性的无机材料实验数据来训练该模型,并根据布拉格定......

文章论述机器学习高精度化学反应势能面构建

近日,中国科学院大连化学物理研究所研究员傅碧娜和张东辉院士受邀发表了机器学习高精度化学反应势能面构建的综述文章,系统介绍了团队近几年在基本不变量-神经网络高精度势能面构建方法方面的发展和应用,探讨了该......

新进展!开发出寻找新型磁性材料的新方法

美国艾姆斯国家实验室(AmesNationalLaboratory)的科研人员开发出一个新的机器学习模型,该模型可预测新材料组合的居里温度(材料保持磁性的最高温度),用于寻找不含关键元素的永磁材料。科......