剑桥大学和伦敦玛丽女王大学的研究人员表明,线粒体DNA也会出现在一些癌症DNA中,这表明它就像一块创可贴,试图修复我们遗传密码的损伤。这项研究成果于10月5日发表在《Nature》杂志上。
线粒体是细胞内的微小细胞器,它们像电池一样,以ATP分子的形式为细胞提供能量。每个线粒体都有自己的DNA,也就是线粒体DNA,它们与人类基因组的其他部分(细胞核DNA)截然不同。
线粒体DNA是通过母系遗传的——也就是说,我们从母亲而不是父亲那里继承了它。然而,美国辛辛那提儿童医院医疗中心的研究人员2018年发表的一项研究报告称,有证据表明,一些线粒体DNA是通过父系遗传的。
为了调查这种说法,剑桥大学的研究小组研究了11,000多个家庭的DNA,以寻找父系遗传的模式,这些家庭参与了Genomics England公司的10万人基因组计划。
研究人员在一些孩子的细胞核DNA中发现了线粒体DNA“插入物”,而这些“插入物”并不存在于他们父母的DNA中。这意味着美国团队可能得出了错误的结论:他们观察到的不是父系遗传的线粒体DNA,而是这些插入物。
现在,这项工作扩展到66,000多人。研究团队表明,线粒体DNA核转移是一个持续过程,新的插入实际上一直都在发生,这显示了我们基因组进化的一种新方式。
剑桥大学临床神经科学系的Patrick Chinnery教授解释说:“数十亿年前,原始的动物细胞吸收了一种细菌,这种细菌变成了我们现在所说的线粒体。它们为细胞提供能量,使其正常工作,同时去除高浓度的氧气。随着时间的推移,这些原始线粒体的一部分已进入细胞核,使它们的基因组能够相互交流。
“所有这一切都被认为是在很久以前发生的,大多是在物种形成之前,但我们发现这不是真的。我们可以看到这种情况正在发生,线粒体的遗传密码以一种可测量的方式转移到核基因组中,”他说。
研究团队估计,每4,000个新生儿中就有一个的线粒体DNA转移到核DNA上。如果这个人有了自己的孩子,他们就会把这些插入物传递下去。研究小组发现,我们大多数人都携带了5个新的插入物,七分之一(14%)的人携带了最新的插入物。在偶然情况下,这些插入物会引起极其罕见的疾病,包括罕见的遗传性癌症。
目前尚不清楚线粒体DNA是如何插入细胞核DNA的——是直接插入还是通过中间体(比如RNA)插入——但Chinnery教授表示,这很可能发生在母亲的卵细胞内。
在分析12,500个肿瘤样本的序列后,研究人员发现线粒体DNA在肿瘤DNA中更为常见,大约每1,000例癌症中就会有一例出现线粒体DNA,在某些情况下,癌症实际上是由线粒体DNA插入物引起的。
“我们的细胞核遗传密码一直被破坏,也一直在修复,”Chinnery教授说。“线粒体DNA似乎就像一个创可贴,帮助细胞核遗传密码自我修复。有时候这种方法是有效的,但在极少数情况下,这可能会使情况变得更糟,甚至引起肿瘤发生。”
超过一半(58%)的插入物位于编码蛋白质的基因组区域。在大多数情况下,身体会识别入侵的线粒体DNA,并通过甲基化的过程使其沉默。当病毒设法将自己插入我们的DNA时,也会发生类似的过程。然而,这种沉默的方法并不完美,因为一些线粒体DNA插入物会继续被复制,并在细胞核周围移动。
研究小组也在寻找相反情况的证据,也就是线粒体DNA吸收了一部分的细胞核DNA,但他们并没有找到。他们认为,以下几个原因也许能解释为什么会出现这种情况。
首先,细胞只有两个细胞核DNA拷贝,但线粒体DNA有数千个拷贝,所以线粒体DNA被破坏并进入细胞核的可能性大得多。其次,线粒体中的DNA被包裹在两层膜内,膜上没有孔,因此细胞核DNA很难进入。相比之下,一旦线粒体DNA成功跑出去,它们很容易通过核膜上的孔洞。
伦敦玛丽女王大学的Mark Caulfield教授表示:“我很高兴10万人基因组计划揭开了线粒体DNA和我们基因组之间的动态相互作用。这定义了DNA修复中的一个新角色,但偶尔也会引发罕见疾病,甚至是恶性肿瘤。”
原文检索
Wei, W., Schon, K.R., Elgar, G. et al. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature (2022). https://doi.org/10.1038/s41586-022-05288-7
美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......
瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......
在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......
中国科学院上海营养与健康研究所研究员李昕研究组,通过解析人体多器官线粒体突变的“衰老图谱”,提出“线粒体双相时钟”模型,揭示了线粒体通过两种截然不同的模式编码器官衰老,进而同时编码了随机性和确定性衰老......
华东师范大学教授李大力、刘明耀团队联合临港实验室青年研究员陈亮团队,开发出高性能线粒体腺嘌呤碱基编辑器(eTd-mtABEs),并利用eTd-mtABEs成功构建了感音神经性耳聋和Leigh综合症大鼠......