发布时间:2018-11-27 17:14 原文链接: 阿尔兹海默症新机制:大脑细胞“篡改”自己的基因

  阿尔兹海默症(AD)是一种常见的神经性衰退疾病,却有着迷雾一般的致病机制,至今未被解析清楚。11月21日,《Nature》期刊新发一篇文章揭示了AD一种新的致病机理:与体内的大多数细胞不同,我们大脑中的神经元会“篡改”自己的基因,引发蛋白表达上升,从而埋下阿尔兹海默症的“祸端”。

image.png

Brains without (left) and with (right) Alzheimer’s disease ROBERT FRIEDLAND/SCIENCE SOURCE

  回溯至20世纪70年代,科学家们发现某些细胞能够改写和编辑DNA,例如一些免疫细胞会剪掉基因片段(编码检测或者攻击病原体的蛋白),将剩余的片段拼接在一起以创造新的蛋白。我们的B细胞依赖这一操作能够产生约1万亿种抗体,足以抵抗大量细胞、病毒以及其他攻击者。

  现在,来自Sanford Burnham Prebys医学发现研究所的神经学家Jerold Chun带领团队发现,除了免疫细胞,人类大脑的神经元也存在这一现象,即基因重组(genomic reshuffling),也称为体细胞重组。

  “神经元有能力改变‘生命蓝图’。” Jerold Chun解释道。这种能力有可能让神经元受益,因为有可能会生成一系列增强学习、记忆或者其他大脑功能的APP变异。但是,这一现象也存在风险——体细胞重组可能会通过产生有害蛋白质或者其他方式损伤大脑细胞,从而增加阿尔兹海默症的风险。

image.png

https://doi.org/10.1038/s41586-018-0718-6

  新研究发现了什么?

  为了寻找大脑中神经细胞“基因重组”的确切证据,Sanford Burnham Prebys医学发现研究所的神经学家Jerold Chun带领团队分析了6位健康的老年人、7位患有阿尔兹海默症(非遗传性)的患者。

  他们测试了细胞是否含有淀粉样蛋白前体蛋白(APP)的不同基因版本,这一蛋白是AD患者大脑中病斑的主要来源。

  研究人员认为,APP基因是一个很好的候选研究对象,因为之前的研究已经表明,阿尔兹海默症患者的神经元可能含有额外的基因拷贝,这可能是由体细胞重组引起的。

  结果显示,神经元似乎拥有成千上万种APP基因变体。一些变化包括转换单个核苷酸碱基而另一些变化则是丢弃大片段的DNA,再将剩余的部分重新编织在一起。

  Jerold Chun团队还发现,阿尔兹海默症患者的神经元含有的APP基因变体数量是健康人神经细胞的6倍!其中,有11种突变发生在罕见的遗传性疾病中。

  APP基因重组的原因?

  为什么会发生基因重组?Jerold Chun团队认为,关键在于逆转录酶(reverse transcriptase)。当AAP基因进入转录程序产生RNA拷贝时,逆转录酶随后会基于RNA分子制备新的DNA拷贝。

  因为逆转录酶是一个“草率的复印机”,Jerold Chun认为,由逆转录酶产生的新APP版本可能与原始基因不匹配,即产生APP的不同变异。考虑到阻断逆转录酶的药物是HIV感染的标准治疗之一,Jerold Chun建议,这一类药物或许也有可能对抗阿尔兹海默症。

  治疗AD?

  一些科学家希望,能够有更多的证据表明逆转录酶有这类作用。波士顿塔夫茨大学的病毒学家John Coffin表示,用逆转录酶抑制剂治疗阿尔兹海默症还为时尚早,需要更多的研究来验证这一思路。

  John Coffin团队还没有检测到来自其他器官的细胞或者在大脑中活跃的其他基因的体细胞基因重组迹象。但是,John Coffin推测,这一机制很有可能正在修改其他基因。如果未来确实被验证,将有望对其他脑部疾病(例如帕金森)带来新的指示。

  澳大利亚布里斯班昆士兰大学的分子生物学家Geoffrey Faulkner评价道,这是一项具有里程碑意义的研究,可能是分子生物学领域多年来最大的发现之一。

相关文章

工程蛋白让人类“听到”神经元交流

美国艾伦研究所和霍华德·休斯医学研究所科学家通过蛋白质工程技术,改造出一种特殊蛋白,名为iGluSnFR4,这是一种分子级“谷氨酸指示器”,可用于实时观察大脑中神经元的交流过程。这一成果有助破译大脑隐......

科学家发现首个可直接导致精神疾病的基因

近日,一项发表于《分子精神病学》的研究发现,单个基因GRIN2A可直接导致精神疾病。而此前的研究认为,精神疾病是由许多基因共同作用所致。根据世界卫生组织(WHO)数据,2021年全球每7人中就有1人患......

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

胚胎“体检”狙击遗传肿瘤10年诞生百名“无癌宝宝”

11月1日,在长沙举行的第五届湖南省抗癌协会家族遗传性肿瘤专业委员会学术年会上,中信湘雅生殖与遗传专科医院(下称中信湘雅)首席科学家卢光琇宣布,该院第100位通过胚胎植入前遗传学检测(PGT)技术阻断......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

特定神经元有助大脑微调血糖水平

在禁食或低血糖等压力情况下,脑部能调控葡萄糖释放,但这种调控作用在日常生活中却鲜少被关注。据最新一期《分子代谢》杂志报道,美国密歇根大学的一项新研究表明,下丘脑的一类特定神经元能帮助大脑在日常情况下维......

研究揭示人类海马新生未成熟神经元的独特演化规律

8月11日,《自然-神经科学》(NatureNeuroscience)在线发表了题为Cross-speciesanalysisofadulthippocampalneurogenesisreveals......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......