发布时间:2023-03-10 14:29 原文链接: 青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适应性进化速度,成功获得高温高光耐受能力显著提高的进化藻株,并揭示了影响蓝细菌高温高光耐受能力的关键靶点与功能机制。相关成果3月4日在线发表于《自然·通讯》。

光合作用是地球上最重要的生物化学过程,植物和藻类的光合固碳活动为生物圈的维持和发展提供了最根本的初级生产力。提高光合生物的高温高光耐受能力是光合作用研究的重要方向。

蓝细菌是研究光合作用的模式体系,提高蓝细菌高温高光耐受能力并解析其功能机制,对其他光合生物体系的优化具有指导和示范价值。然而,高温高光胁迫对蓝细菌的损伤机制尚未获得清楚的解析,理性的代谢工程策略难以实现细胞高温高光耐受性的有效提升,进化工程是改造此类复杂生理表型的有效手段。

研究团队以蓝细菌模式藻株聚球藻PCC 7942为平台,系统鉴定影响其基因组复制保真性的关键基因,并通过保真元件敲除-诱变元件表达的整合策略将重组藻株复制突变率提高了两个数量级。

在此基础上,研究团队发现环境胁迫同样可以影响聚球藻突变率,通过遗传保真机制缺陷与培养环境胁迫的耦合可以触发超突变状态,将细胞突变率提高三个数量级。

根据上述结果,研究团队提出环境胁迫和复制保真机制缺陷的协同作用机制,并使用该系统进行聚球藻高温高光耐受能力的优化。

应用上述超突变系统,研究团队在两周内即成功获得了高温高光耐受能力大幅提升的聚球藻进化藻株,相比实验室适应性进化和常规化学诱变表现出效率上的巨大优势。在出发藻株无法生存的高温和光照条件下,聚球藻进化藻株表现出良好的适应性和快速生长能力。

研究团队对获得的23个高温高光耐受藻株进行了全基因组测序,并结合应用正向遗传学和反向遗传学策略,锁定了赋予聚球藻高温高光耐受能力的主效突变为FoF1-ATP合成酶alpha亚基C252A突变和莽草酸激酶启动子区域的NC2突变。其中,NC2突变通过提高莽草酸激酶表达水平导致聚球藻高温高光耐受性的机制为首次报道;研究团队对该机制进行了验证,通过莽草酸激酶的过量表达有效提升了重组藻株面对高温和高光胁迫的生长稳定性,表明该策略可能对不同蓝细菌菌株具有广泛适用性。

研究团队进而对NC2突变通过上调莽草酸激酶表达提高聚球藻高温高光耐受能力的机制进行深入解析,结合转录组、蛋白组以及光合生理参数分析发现,该突变引发聚球藻光合和固碳系统的显著变化,减少了光能的过度吸收、增强了细胞循环电子流和氧化磷酸化活性并强化了糖原和蛋白合成,最终保证高效而稳定的光合固碳过程。

该研究发展了新型蓝细菌超突变系统并通过聚球藻高温高光耐受性改造证实了其有效性,为复杂光合生理表型的优化提供了可靠的工具;研究中所发现的莽草酸激酶表达提升引发蓝细菌高温高光耐受能力优化的现象,丰富了对光合生理代谢的认识,为未来高光效蓝细菌底盘的人工设计提供了新的启示。

研究获得了国家重点研发计划、国家自然科学基金、中科院青年人才创新促进会、洁净能源创新研究院联合基金以及山东省人才计划的支持。

相关文章

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

海滩岩胶结作用研究获进展

近日,中国科学院南海海洋研究所边缘海与大洋地质重点实验室助理研究员张喜洋、副研究员杨红强与中国科学院南京地质古生物研究所等合作者在海滩岩微生物介导的胶结作用取得新认识。相关研究发表于《古地理学,古气候......

蓝细菌中发现新型脂肪类生物聚合物

微藻作为地球上最古老的生物之一,可以为甲烷、生物氢、生物柴油等多种不同类型的可再生生物燃料提供原材料。近日,中科院广州地球化学研究所有机地球化学国家重点实验室、深地科学卓越创新中心博士研究生孔祥兰和研......

最新研究揭示蓝细菌受光/暗调控的蛋白质降解

光对于光合生物(包括高等植物和蓝细菌)是必需的,并参与调控蛋白质的合成与降解。光调控的蛋白质降解是光合生物中蛋白质质量控制的重要机制,其中最典型、研究最深入的是光系统II反应中心D1蛋白,其光诱导的降......

研究揭示蓝细菌中赖氨酸甲基转移酶的作用机制

蛋白质翻译后修饰通过在一个或几个氨基酸残基上加上化学修饰基团而改变蛋白质的结构和功能,参与蛋白质的活性状态、定位、折叠以及蛋白质-蛋白质间相互作用。赖氨酸甲基化是常见的蛋白质翻译后修饰类型之一,其调控......

一文详解蓝细菌

旧名为蓝藻(bluealgae)或蓝绿藻(blue—greenalgae),是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细......

科研人员发现蓝细菌适应高盐逆境深层机制

蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖等小分子化合物来抵抗逆境,......