Antpedia LOGO WIKI资讯

深圳先进院靶向纳米氧载体高效治疗肿瘤研究获进展

近日,中国科学院深圳先进技术研究院研究员蔡林涛领衔的纳米医学研究小组构建了杂交蛋白纳米氧载体,靶向递送氧、化疗药物、光敏剂到肿瘤内部,实现携氧增效的化疗和光动力治疗。相关成果以Tumor-Targeted Hybrid Protein Oxygen Carrier to Simultaneously Enhance Hypoxia-Dampened Chemotherapy and Photodynamic Therapy at a Single Dose 为题发表在医学杂志Theranostics上(2018, 8(13), 3584-3596)。 蔡林涛团队成员罗震宇、郑明彬等基于前期基础(ACS Nano, 2013, 7, 2056;ACS Nano, 2014,8, 12310;ACS Nano, 2016,10, 10049;Adv. Funct. Mater. 2017, 1703197),通过双硫键重构技术......阅读全文

快速了解光动力免疫原性死亡

  免疫原性。是指能引起免疫应答的性能,即抗原能刺激特定的免疫细胞,使免疫细胞活化、 增殖、分化,最终产生免疫效应物质抗体和致敏淋巴细胞的特性。一种物质能否被定义为抗原,取决于其是否具有免疫原性及免疫反应性(抗原性)。免疫原性取决于该物质自身的性质,如分子量、化学数学、分子结构以及分子构象等。免疫反

深圳先进院纳米免疫光动力治疗肿瘤研究取得系列进展

  近日,中国科学院深圳先进技术研究院研究员蔡林涛领衔的纳米医学研究组构建了肿瘤靶向供氧体系(杂交蛋白靶向纳米氧载体)和肿瘤原位产氧体系(二氧化锰纳米金笼)来增强光动力治疗效果,并引发肿瘤免疫原性细胞死亡(ICD),有效消除原位瘤和抑制远端瘤。相关成果分别发表在ACS Nano(2018,10.10

肿瘤纳米光动力治疗铸就“免疫盾牌”

   近日,记者从广东医科大学获悉,该校药学院郑明彬博士和中国科学院深圳先进技术研究院研究员蔡林涛合作,在纳米免疫光动力治疗肿瘤方面取得系列突破,研究成果在国际著名刊物《ACS Nano》和《Biomaterials》上发表。 郑明彬介绍,团队采用白蛋白和血红蛋白杂交技术,包

深圳先进院打造“纳米仿生氧载体”突破化疗耐药难题

  近日,中国科学院深圳先进技术研究院研究员蔡林涛领衔的纳米医学研究小组利用“以癌治癌”的理念,创建了“纳米仿生氧载体”在突破化疗耐药难题方面取得突破。研究成果Cancer Cell Membrane-Biomimetic Oxygen Nanocarrier for Breaking Hypoxi

中科院深圳先进院纳米仿生氧载体突破化疗耐药难题

  近日,中国科学院深圳先进技术研究院研究员蔡林涛带领的纳米医学研究小组,利用“以癌治癌”的理念,创建了“纳米仿生氧载体”,在突破化疗耐药难题方面取得重大突破。研究成果在线发表于《先进功能材料》。  蔡林涛及其团队成员田浩、郑明彬基于前期工作基础,采用聚合物包载化疗药物(阿霉素)和载氧蛋白质(血红蛋

暨南大学Small发表肿瘤靶向化疗与光疗联合治疗新成果

   癌症是世界范围内威胁人类健康和生命的主要疾病之一。目前,化疗仍然是临床癌症治疗的主要手段之一,但化疗患者往往遭受化疗药物的严重副作用,而且由于治疗方式单一,导致治疗效果不理想,影响了癌症患者的治愈满意度。为了提高化学疗法的安全性和疗效,一个有效策略是将抗肿瘤药物或其他不同作用机制的治疗方式相结

深入解读纳米医疗的研究现状

  如今,纳米技术已经成为21世纪的关键技术之一,其推动了各个研究领域的迅猛发展,当然纳米科技对医学研究的影响也是显而易见的。比如在生物医学研究中纳米机器人可充当“微型医生”,解决了医生用传统技术难以解决的问题。同时纳米科技在癌症治疗、疫苗开发、HIV治疗以及多种疾病的诊疗中也发挥着关键作用。  纳

深入解读纳米医疗的研究现状

  如今,纳米技术已经成为21世纪的关键技术之一,其推动了各个研究领域的迅猛发展,当然纳米科技对医学研究的影响也是显而易见的。比如在生物医学研究中纳米机器人可充当“微型医生”,解决了医生用传统技术难以解决的问题。同时纳米科技在癌症治疗、疫苗开发、HIV治疗以及多种疾病的诊疗中也发挥着关键作用。  纳

深入解读纳米医疗的研究现状

   如今,纳米技术已经成为21世纪的关键技术之一,其推动了各个研究领域的迅猛发展,当然纳米科技对医学研究的影响也是显而易见的。比如在生物医学研究中纳米机器人可充当“微型医生”,解决了医生用传统技术难以解决的问题。同时纳米科技在癌症治疗、疫苗开发、HIV治疗以及多种疾病的诊疗中也发挥着关键作用。  

纳米医疗研究进展

如今,纳米技术已经成为21世纪的关键技术之一,其推动了各个研究领域的迅猛发展,当然纳米科技对医学研究的影响也是显而易见的。比如在生物医学研究中纳米机器人可充当“微型医生”,解决了医生用传统技术难以解决的问题。同时纳米科技在癌症治疗、疫苗开发、HIV治疗以及多种疾病的诊疗中也发挥着关键作用。纳米疗法与

仿生纳米笼可特异性靶向肿瘤干细胞抗肿瘤转移

  肿瘤的转移是导致肿瘤患者死亡的主要原因,其中肿瘤干细胞(CSCs)被视为肿瘤转移的根源。CSCs在肿瘤组织中比例非常少,且主要分布在肿瘤组织血管周围或深部厌氧区域。如何突破各种生理屏障,将抗癌药物高效递送到肿瘤组织并特定靶向肿瘤CSCs是肿瘤转移治疗的一大挑战。  中国科学院上海药物研究所药物制

磁小体的生物合成及用于肿瘤靶向治疗的研究进展

    趋磁细菌(Magnetotactic bacteria,MTB)是一大类能沿着地磁场方向进行趋磁运动的细菌的总称,不具有系统分类学上的意义。 这类细菌的特殊性在于能产生一种原核生物细胞器-磁小体(magnetosome)(具有 Fe3O4 纳米磁核)。 这类生物来源的磁纳

浅谈基因治疗药物市场战略投资展望

  基因治疗(genetherapy):指用(正常或野生型)基因导入人体的细胞,使其发挥生物学效应,从而达到治疗疾病目的的技术方法。   基因治疗是随着20世纪七八十年代DNA重组技术、基因克隆技术等的成熟而发展起来的最具革命性的医疗技术之一,它是以改变人的遗传物质为基础的生物医学治疗手段,在重大

浅谈基因治疗药物市场战略投资展望

  基因治疗(genetherapy):指用(正常或野生型)基因导入人体的细胞,使其发挥生物学效应,从而达到治疗疾病目的的技术方法。   基因治疗是随着20世纪七八十年代DNA重组技术、基因克隆技术等的成熟而发展起来的最具革命性的医疗技术之一,它是以改变人的遗传物质为基础的生物医学治疗手段,在重大

苏州学者研究出新型X射线响应纳米载药系统

  化疗是临床上常用的肿瘤治疗方式,但是单分子化疗药物生物利用度低、治疗副作用大,给患者身心及其家庭带来负担。利用纳米技术将单分子化疗药物制备成纳米药物,可实现化疗药物肿瘤靶向和可控释放,从而改善治疗效果并降低毒副作用,有利于实现高效低毒化疗。  介孔二氧化硅纳米材料具有合成简单、结构可控、化学剪裁

细菌的生物治疗和纳米光敏剂的光热治疗联合抑制实体瘤

  近日,中国科学院深圳先进技术研究院蔡林涛和刘陈立课题组合作,构建了厌氧靶向的生物/非生物交联递送系统,通过细菌的生物治疗和纳米光敏剂的光热治疗联合抑制实体瘤。研究成果在线发表在生物材料期刊Biomaterials(doi: 10.1016/j.biomaterials. 119226)。  研究

上海硅酸盐所实现不用有毒化学药物的肿瘤特异性化疗

  众所周知,癌症化疗中,需要使用高毒性的化疗药物。由于药物的非特异性,在杀死癌细胞的同时,同样杀死正常细胞,损害正常的组织和器官。事实上,70%以上的接受化疗的癌症患者,最后死于药物的毒性,以及癌细胞对药物的耐药性。是否可以使用对正常细胞和组织无毒的纳米材料或分子,让这些材料或分子进入肿瘤后才产生

一文近期癌症转移研究新进展

  本文中,小编整理了近期与癌症转移相关的最新研究进展,与大家一起学习!  图片来源:Wellcome Collection  【1】Nat Cell Biol:乳腺癌细胞或能转变其代谢策略来发生转移  doi:10.1038/s41556-020-0477-0  近日,一项刊登在国际杂志Natur

2012国家自然科学基金哪些干细胞项目资助金额最大

  国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录科学基金网络信息系统(https:

中国团队研发新型纳米材料,可安全抑制肿瘤生长

  癌症病人在化疗中通常需要使用高毒性的化疗药物。由于药物的非特异性,在杀死癌细胞的同时,同样杀死正常细胞,损害正常的组织和器官。事实上,70%以上接受化疗的癌症患者,最后死于药物毒性。是否可以使用对正常细胞和组织无毒的纳米材料或分子,让这些材料或分子进入肿瘤后才产生毒性,或引起毒害作用?最近,中科

新型纳米材料可安全抑制肿瘤生长

  癌症病人在化疗中通常需要使用高毒性的化疗药物。由于药物的非特异性,在杀死癌细胞的同时,同样杀死正常细胞,损害正常的组织和器官。事实上,70%以上接受化疗的癌症患者,最后死于药物毒性。是否可以使用对正常细胞和组织无毒的纳米材料或分子,让这些材料或分子进入肿瘤后才产生毒性,或引起毒害作用?最近,中科

基金委与NIH生物医学合作项目初审结果发布

  经公开征集,2016年度国家自然科学基金委员会(NSFC)与美国国立卫生研究院(NIH)生物医学合作研究项目共接收项目申请183项,根据双方项目指南的要求和相关规定,予以受理以下158个项目申请。#科学部编号项目名称申请人单位名称18161101162吲哚胺-2,3-双加氧酶IDO在HIV-1感

蔡林涛:给抗癌药穿上可视化“马甲”

  “做学问就是要坚持下去,任何失败都不低头,在任何领域里坚持做10—20年,必能有所突破。如果中途没有坚持下去,就很难做出让你心动的结果。  近年来,我国癌症发病率和死亡率呈明显上升趋势。然而,传统治疗手段不仅针对性低、而且毒副作用明显,导致药品无效耗费率高。  中国科学院深圳先进技术研究院医药所

与巴基斯坦科学基金会合作研究项目初审结果发布

   2016年度国家自然科学基金委员会与巴基斯坦科学基金会合作研究项目初审结果的通知  经公开征集,2016年度国家自然科学基金委员会(NSFC)与巴基斯坦科学基金会(PSF)共收到合作研究项目申请191项。根据我委相关规定,经过初步审查,并与巴方核对清单,确定有效申请为168项,现将通过初审的项

2012国家自然科学基金评审结果名单之复旦大学(生物类)

  来自国家自然科学基金委员会的消息,国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录

我国在近红外光学活性材料及生物应用方面取得系列进展

  在最新一期出版的美国化学会旗下的期刊ACS Nano(影响因子IF 13.942)上,刊载了中国科学院大学化学科学学院田志远教授课题组博士研究生吕岩霖的研究论文Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitatio

阿霉素丙二醇脂质体的制备及体外抗肿瘤作用研究

化療作为癌症治疗的主要手段,存在两大问题:一是化疗药物缺乏选择性,二是多药耐药性[1-2]。靶向药物制剂成为当今抗肿瘤领域的研究主流[3-4]。高通透性和高滞留性[高渗透长滞留效应(EPR效应)]是肿瘤靶向药物设计的金标准[5]。醇质体是一种新型的柔性脂质体,是在脂质体的双分子层中加入不同的柔软剂,

纳米中心在纳米-生物界面相互作用研究中取得系列进展

  由于纳米材料的独特理化性质,在生物组织工程材料、生物传感、药物载体、重大疾病诊疗等医学相关领域表现出强大临床应用前景,尤其对于肿瘤等高度异质性疾病的个体化诊断和治疗极具潜力。然而,高度异质性、非平衡的动态生理环境,使得纳米材料进入生物体系并未能如设计的那样完全靶向目标位点,将持续与生物体系内的分

基金委与埃及科学研究技术院合作项目初审结果

2018年度国家自然科学基金委员会与埃及科学研究技术院合作研究项目初审结果通知根据国家自然科学基金委员会(NSFC)与埃及科学研究技术院(ASRT)签署的合作协议及后续达成的共识,2018年双方在生命科学(Life Sciences)及工程与材料科学(Engineering and Material

基金委与埃及科学研究技术院合作项目初审结果

2018年度国家自然科学基金委员会与埃及科学研究技术院合作研究项目初审结果通知 根据国家自然科学基金委员会(NSFC)与埃及科学研究技术院(ASRT)签署的合作协议及后续达成的共识,2018年双方在生命科学(Life Sciences)及工程与材料科学(Engineering and