Antpedia LOGO WIKI资讯

技术生物所在材料辐照改性及环境应用研究中取得进展

近期,技术生物与农业工程研究所吴正岩研究员带领的研究组在材料的辐照改性及在环境领域中的应用方面取得系列进展。 辐照改性技术可以使材料的物理、化学性能得到改善,由此产生的物理和化学变化有助于我们实现对材料表面特性的调控及改进,从而提高材料的应用价值,拓宽其应用范围。辐照改性技术具有作用时间短、效率高、低污染、可控性强、工艺简单等优点,因此在物理、化学和材料科学领域中都得到了较为广泛的应用。 蔡冬清等将经过辐照改性的黏土和秸秆灰添加到农药中,发展了一种新型绿色农药增效技术,增强了农药附着力,减少了农药流失,延长了药效,有望实现减量、减次、减排,达到增效、丰产的作用,有利于保护农业生态环境和促进农业可持续发展。相关研究成果已发表在《农业与食品化学期刊》(Journal of Agricultural and Food Chemistry, 2013, 61, 5215–5219) 和《美国化学会应用材料与界面》(A......阅读全文

铁军化工开发两纳米改性材料

  记者近日从宝鸡铁军化工防腐安装有限责任公司获悉,该公司与西北工业大学理学院合作开发出纳米改性聚脲涂料和纳米复合材料改性乙烯基玻璃钢两种纳米改性材料,可广泛应用于石油管道、炼油化工、海洋设施等防腐、防水涂装领域。   纳米改性聚脲涂料是在聚脲涂料中加入纳米材料,性价比要高于单纯聚脲产品材料

硅碳材料改性之表面包覆!

针对硅导电性差、电化学反应中体积变化大以及形成的SEI膜不稳定等缺点,科研人员提出用碳材料对纳米硅进行改性(即制备纳米硅/碳复合材料(Nano-Si/C))以取得综合优异的电化学性能。表面包覆包覆是纳米材料改性中用得最多的方法之一。在电化学反应过程中,均匀稳定的SEI容易在碳材料外表面形成,较难在S

硅碳材料改性之表面包覆!

针对硅导电性差、电化学反应中体积变化大以及形成的SEI膜不稳定等缺点,科研人员提出用碳材料对纳米硅进行改性(即制备纳米硅/碳复合材料(Nano-Si/C))以取得综合优异的电化学性能。表面包覆包覆是纳米材料改性中用得最多的方法之一。在电化学反应过程中,均匀稳定的SEI容易在碳材料外表面形成,较难在S

塑料改性之阻燃改性

  改性塑料在家电、电子电器、汽车等领域的应用往往需要阻燃,阻燃改性可以通过加入阻燃剂实现。有溴系阻燃和无卤阻燃。    什么是阻燃剂?阻燃剂又称难燃剂,耐火剂或防火剂,赋予易燃聚合物难燃性的功能性助剂。它们大多是元素周期表中第ⅤA(磷)、ⅦA(溴、氯)和ⅢA(锑、铝)族元素的化合物。    改性塑

塑料改性之改性技术

  改性塑料在阻燃性、强度、抗冲击性、韧性等方面的性能都优于通用塑料,下游应用领域广泛,主要应用于家电、汽车、建筑、办公设备、机械等领域,其中家电、汽车是其最大的两个应用领域。改性技术是塑料改性成功的关键因素。    改性技术包括共混、填充、增强等物理方法和共聚、交联等化学方法,物理方法是目前最重要

锂电池隔膜材料聚乙烯的改性介绍

  聚乙烯的改性品种主要有氯化聚乙烯、氯磺化聚乙烯、交联聚乙烯和共混改性品种。  氯化聚乙烯:以氯部分取代聚乙烯中的氢原子而得到的无规氯化物。氯化是在光或过氧化物的引发下进行的,工业上主要采用水相悬浮法来生产。由于原料聚乙烯的分子量及其分布、支化度及氯化后的氯化度、氯原子分布和残存结晶度的不同,可得

锂电池材料硅酸铁锂的改性包覆碳材料介绍

  由于本征电导率和离子扩散速率很低,纯Li2FeSiO4材料几乎没有电化学活性。碳包覆可提高材料的导电性和电化学性能,包覆的碳源分为两种:  ①无机碳源,主要是一些碳的单质,如碳凝胶、乙炔黑或CNT;  ②有机碳源,依靠有机物在惰性环境下分解形成碳的包覆层,一般又分为小分子有机物(如柠檬酸、蔗糖、

电极材料改性新法可大幅提高电容器容量

  功率密度高、充放电时间短、循环寿命长……说起超级电容器的好处很多,但是目前市场上的商用超级电容器容量普遍较低,影响了超级电容器的广泛应用。南京理工大学发现一种电极材料改性的方法,将大大提高电容器的容量。该成果已发表在最新一期国际权威刊物《先进材料》上。  超级电容器作为一种新型的高效储能装置,可

塑料改性之ABS塑料耐热改性

ABS塑料的热变形温度为93~118℃,制品经退火处理后可提高10℃左右。ABS在-40℃时仍能表现出一定的韧性,可在-40~100℃的温度范围内使用。但往往为了某些环境温度会高于100℃,因此为了使该材料满足使用的要求,一般通过耐热改性来提高ABS塑料的耐热性能,拓宽其应用领域。    ABS塑料

过程工程所改性碳材料增强臭氧氧化研究取得进展

  随着我国经济快速发展,水体污染和水资源匮乏问题愈发突出。工业废水外排污染物渐趋复杂,所含难生物降解污染物在自然界迁移转化过程中,易通过食物链进入人体和动物,在较低浓度下即对健康造成危害。面对日益迫切的水污染治理与防控需求,开发高效深度处理技术成为当务之急。非均相催化臭氧氧化技术利用臭氧分子和羟