Antpedia LOGO WIKI资讯

上海光机所非线性光学频率转换技术研究获进展

近期,中国科学院上海光学精密机械研究所高功率激光物理联合实验室研究员朱健强、刘德安研究团队在非线性光学频率转换相关技术方面取得研究进展。提出并实验验证了新一类相位匹配方法——电压调谐相位匹配。相关研究成果发表在1月27日出版的《物理评论快报》[Phys. Rev. Lett. 118,043901, (2017)]上。论文的第一作者为博士生崔子健。审稿人对该论文给予了高度评价:“该论文的主题能够引起科学家的广泛兴趣,得到的结果新颖、可靠,并有望在非线性光学领域开启一个新的视角。” 电压调谐相位匹配方法通过引入外电场,利用材料的线性电光效应实现相位匹配,以获得最大转换效率输出,从根本上克服了高功率激光系统中转换效率对角度、温度、波长变化敏感的问题,灵活精确地调控电光材料的折射率,进而拓展了传统非线性材料,甚至低双折射和各向同性材料在非线性光学中的应用。 为了验证这一新方法,该研究团队设计了巧妙的原理验证实验。通过把线性电光......阅读全文

室温非线性霍尔效应

  最新Nature Nanotechnology:室温非线性霍尔效应  几何相位和拓扑之间的紧密联系使得基于霍尔效应的现象已成为现代材料和物理学的主要研究重点之一,这促使了人们对物质拓扑态的探索和许多相应实际应用的开发。在线性响应方式下,霍尔电导率需要通过磁化或外部磁场来打破时间反演对称性。但最近

非线性晶体是什么

对于激光强电场显示二次以上非线性光学效应的晶体。非线性光学效应大体包含三类,倍频、混频、高次谐波发生和光的参量振荡与放大等;受激散射现象如受激喇曼散射和受激布里渊散射;多光子吸收、光致电离、光损伤等。非线性光学晶体由于具有波长变换,增大振幅,开关,记忆等许多元件功能,正作为光计算的基本元件而引人注目

缺陷调制二维半导体非线性荧光 及非线性吸收特性研究

  近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室王俊课题组在提高二维纳米材料非线性光学特性方面取得新进展。研究表明双(三氟甲烷)磺酰亚胺(TFSI)处理对单层过渡金属硫化物的非线性光学性质具有显著影响,处理后的MoS2和WS2表现出增强的双光子吸收和双光子发光性能。相关研究成果发表

非线性光学晶体的具体功能

非线性光学晶体是一种可以对激光束进行调制、调幅、调偏、调相的重要的光学晶体材料,是激光器中的一种重要材料。随着激光技术在工业、农业、军事、医学等领域中得到广泛应用,研制新型非线性光学晶体也成为国际光电子科技领域、新材料科技领域的前沿和热门课题。20世纪60年代,美国贝尔实验室发现了铌酸锂晶体(LiN

非线性药代动力学

药物消除有特异性和饱和性。药物浓度低时,为一级代谢,药物浓度较高时,呈饱和状态,为零级代谢。非线性代谢的药物,其半衰期不是常数,随给药剂量的增大而增大,另外,血药浓度与给药剂量不完全成正比,较高浓度时,再给较小的剂量,也会使血药浓度有大幅度的增加,容易产生药物中毒。

什么是非线性动力学?

非线性动力学,是物理学的思维进入传统方法所不能解决的问题的一座丰碑。也是非常有前途的工具学科,它为大数据时代提供潜在的分析引擎。为什么说非线性,因为物理之外的系统大多数不能用线性系统表述(详情请见《动力学是如何做预测的》)。动力学的核心使命是预测系统的变化,非线性动力学在这点上也是一样的。一个经典的

“最薄”非线性量子光源首次实现

NbOCl2晶体的结构测试,单层厚度约0.65纳米 中国科大供图小型化、集成化是解决空间光学量子系统稳定性差、不可扩展等问题的理想方案,也是光学量子计算、量子通讯等走向大规模和实用化的必经之路。量子光源作为量子光学系统必不可缺的部分,其小型化一直是人们研究的重点。任希锋前期与南京大学等单位合作,将超

分析天平的非线性影响机理

 在电流 I 作用下,传感器内的动圈发热引起永磁体磁感应强度 B、动圈长度 L 发生变化[2-3],取样电阻 RN发热引起其本身阻值的变化。动圈的位置改变引起其感应到的电磁力 F 发生变化,以及环境温度对磁感应强度 B、动圈长度 L、取样电阻 RN的影响。由式( 2) 可知,B、L 的变化会对电子分

石墨烯非线性光学研究获进展

  近日,复旦大学物理学系教授吴施伟课题组联合中国科学院长春光学精密机械与物理研究所郭春雷中美联合光子实验室副研究员程晋罗、中国科学技术大学教授曾长淦、北京大学研究员刘开辉和加拿大多伦多大学教授J. E. Sipe,利用离子凝胶技术(ion-gel)实现了石墨烯中三阶非线性和四波混频非线性光学现象的

非线性动力学的研究内容

研究的内容是化学反应系统在远离平衡条件下,由于系统中非线性过程的作用导致的各类非线性动力学行为,如化学振荡、化学混沌、Turing结构、化学波等。非线性化学动力学作为一门交叉科学正在形成与发展之中,它已成为新世纪物理化学发展中一个新的增长点,并在表面化学、电化学、催化化学、生物化学等学科领域中有广泛