Antpedia LOGO WIKI资讯

快速检测细菌抗药性微型装置

近日,加拿大阿尔伯塔大学发布信息称,该大学工程和药物研究人员发明了一种能快速识别抗药细菌的装置,利用它可发现对克制细菌最有效的特定抗生素。该项目发明与通常比较耗时的检测培植细菌培养物的方法不同,这是一种基于纳米技术的微型装置,用该装置进行检测可以快速获得结果。这个装置的一个突出特征是它类似于跳水板的悬臂,其表面蚀刻了一个微流体通道,其宽度是头发丝的二十五分之一。该通道用类似抗体的生物材料包裹,流体样品中如大肠杆菌或李斯特菌的有害细菌可以贴附在通道表面。该装置上的悬臂吸收细菌进入通道后,会造成悬臂共振频率(质量)和悬臂挠度(吸附压力)的变化。用红外线照射细菌,悬臂弯曲的程度与细菌吸收光的情况成比例,从而提供一个纳米红外光谱用于选择识别。通过观察悬臂微小震动的强度变化情况,可以发现细菌的生死状态,进而知道哪种抗生素对细菌最有效。研究人员希望能够找到对付细菌抗药性的办法,阻止或至少减少抗药菌株的传播。该装置可以在很短的时间内进行多个检......阅读全文

加拿大发明快速检测细菌抗药性的微型装置

  加拿大阿尔伯塔大学工程和药物研究人员发明了一种能快速识别抗药细菌的装置,利用它可发现对克制细菌最有效的特定抗生素。与通常比较耗时的检测培植细菌培养物的方法不同,这种基于纳米技术的微型装置可以快速获得结果。   这个装置的一个突出特征是它类似于跳水板的悬臂,其表面蚀刻了一个微流体通道,宽度是头发丝

加拿大发明快速检测细菌抗药性的微型装置

   加拿大阿尔伯塔大学工程和药物研究人员发明了一种能快速识别抗药细菌的装置,利用它可发现对克制细菌最有效的特定抗生素。与通常比较耗时的检测培植细菌培养物的方法不同,这种基于纳米技术的微型装置可以快速获得结果。   这个装置的一个突出特征是它类似于跳水板的悬臂,其表面蚀刻了一个微流体通道,宽度是头发

阻断重要酶 “饿死”病原体

  抗生素耐药问题已经成为世界性难题之一。但近日从德国慕尼黑工业大学传来好消息,该校的一支化学家小组提出了一种新方法:他们已识别出金黄色葡萄球菌新陈代谢过程中的重要酶,如果以一种定向攻击方式阻断这些酶,就可以将病原体饿死。  “许多细菌已经对广谱药物产生抗药性,而这项研究的一个重要目标是发现新的攻击

常用的分子生物学基本技术

核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的

2020年世界科技发展回顾·生物技术

以色列 研究抗癌、抗衰老疑难杂症 超高分辨率显微镜看到活细胞 本报驻以色列记者 毛黎 特拉维夫大学率先证明,通过CRISPR基因编辑技术能有效地破坏动物癌细胞DNA,同时保持周围其他细胞组织完好无损;舍巴医学中心在全球首次试验性采用“逆向个性化药物”(RPM)治疗癌症患者;特拉维夫大学研

2015最让人郁闷的10个科学新闻:包括培根致癌

  每种事物可能都有好和坏的一面,科学也不例外。2015年,有许多科技新闻让人有种哗众取宠之感,包括曲率引擎、核聚变,以及培根致癌等。但无论如何,这些新闻也给了我们许多启示,通过探究新闻背后的故事,我们才能知道科学并没有那么简单。  培根与癌症  当世界卫生组织发表什么建议的时候,你通常都会听一听,

基因武器:值得警惕的“潘多拉”魔盒

  许多时候,科技是一把双刃剑。就拿前沿生物技术来说,它既能增进人类福祉,也可锻造武器,威胁人类安全。2日有媒体报道,俄罗斯总统普京证实,有人在有目的地采集俄罗斯人的生物信息。消息一出,即遭爆炸性传播。俄媒随即报道,2017年夏,美国空军宣布招标采购12个“正常人类核糖核酸”样品和27 个“正常新鲜

分子生物学常用实验技术(page 1)

第一章质粒DNA 的分离、纯化和鉴定 第二章DNA 酶切及凝胶电泳 第三章大肠杆菌感受态细胞的制备和转化 第四章RNA 的提取和cDNA 合成 第五章重组质粒的连接、转化及筛选 第六章基因组DNA 的提取 第七章RFLP 和RAPD 技术 第八章聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章分

分子生物学常用实验技术(一)

第一章质粒DNA 的分离、纯化和鉴定第二章DNA 酶切及凝胶电泳第三章大肠杆菌感受态细胞的制备和转化第四章RNA 的提取和cDNA 合成第五章重组质粒的连接、转化及筛选第六章基因组DNA 的提取第七章RFLP 和RAPD 技术第八章聚合酶链式反应(PCR)扩增和扩增产物克隆第九章分子杂交技术第十章测