Antpedia LOGO WIKI资讯

微纳尺度表征的俄歇电子能谱新技术

随着纳米结构材料的广泛应用,新型微纳尺度表征技术成为纳米科学技术的重要组成部分。发展在纳米尺度下的各种检测与表征手段,以用于观测纳米结构材料的原子、电子结构,和测量各种纳米结构的力、电、光、磁等特性,日益引起人们的重视。针对目前广泛使用的各种光子谱技术、X射线衍射和精细吸收谱、高分辨的电子显微术等技术的局限性,本论文基于以电子束为探针的俄歇电子能谱(Auger electron spectroscopy),发展了纳米尺度的检测与表征新技术。本论文从俄歇电子能谱基础出发,基于俄歇电子物理机制,着重讨论价带俄歇谱的理论表述和物理意义。采用第一性原理计算方法,模拟GaN和ZnO基半导体不同物理条件下的理论价带俄歇谱;通过实验测量相关半导体的俄歇电子能谱,分别建立材料应力、电荷及电场分布、结构和导电类型等宏观参量的微纳尺度测量技术。主要取得如下研究成果:提出俄歇电子能谱广义位移的概念,把所有能导致俄歇价电子谱的动能位移及其谱峰相对强度改......阅读全文

俄歇电子能谱仪器构造

俄歇能谱仪包括电子光学系统、电子能量分析器、样品安放系统、离子枪、超高真空系统。以下分别进行介绍。电子光学系统电子光学系统主要由电子激发源(热阴极电子枪)、电子束聚焦(电磁透镜)和偏转系统(偏转线圈)组成。电子光学系统的主要指标是入射电子束能量,束流强度和束直径三个指标。其中AES分析的最小区域基本

电子能谱分析的类型

根据所采用的激发源的不同,电子能谱分析主要可分为以下两大类:一是以光电子能谱(简称PES);二是电子束作激发源去照射样品,测量样品所发射出的俄歇电子能量,称为俄歇电子能谱(简称AES)。1、光电子能谱以一定能量的X射线或光(如紫外光)照射固体表面时,被束缚于原子各种深度的量子化能级上的电子被激发而产

俄歇电子能谱仪的测试结果

俄歇电子能谱俄歇电子数目N(E)随其能量E的分布曲线称为俄歇电子能谱。一般情况下,俄歇电子能谱是迭加在缓慢变化的,非弹性散射电子形成的背底上。俄歇电子峰有很高的背底,有的峰还不明显,不易探测和分辩。为此通常采用电子能量分布的一次微分谱,即N’(E)=dN(E)/dE来显示俄歇电子峰。这时俄歇电子峰形

俄歇电子能谱(3)

俄歇跃迁对于自由原子来说,围绕原子核运转的电子处于一些不连续的"轨道 ”上,这些 “ 轨道 ” 又组成K、L、M、N 等电子壳层。 我们用“ 能级 ”的概念来代表某一轨道上电子能量的大小。由于入射电子的激发,内层 电子被 电离, 留下一个空穴。 此时原子处于激发态, 不稳定。 较高

俄歇表面分析(4)

俄歇表面分析俄歇电子在固体中运行也同样要经历频繁的非弹性散射,能逸出固体表面的仅仅是表面几层原子所产生的俄歇电子,这些电子的能量大体上处于 10~500电子伏,它们的平均自由程很短,大约为5~20埃,因此俄歇电子能谱所考察的只是固体的表面层。俄歇电子能谱通常用电子束作辐射源,电子束可以聚焦、

俄歇电子能谱仪的研制和Ar的快电子碰撞研究

本论文介绍了作者在攻读硕士学位期间的研究工作,主要包括:俄歇电子能谱仪的设计和研制情况;用电子能量损失谱方法对氩原子的内壳层2p激发进行研究,结合Cowan code的计算,得到了各个跃迁的能级和自然宽度。在第一章中,主要介绍了俄歇电子能谱仪的建立目的。首先介绍了俄歇过程的基础知识,包括俄歇效应的概

俄歇电子能谱仪的研制和Ar的快电子碰撞研究

本论文介绍了作者在攻读硕士学位期间的研究工作,主要包括:俄歇电子能谱仪的设计和研制情况;用电子能量损失谱方法对氩原子的内壳层2p激发进行研究,结合Cowan code的计算,得到了各个跃迁的能级和自然宽度。在第一章中,主要介绍了俄歇电子能谱仪的建立目的。首先介绍了俄歇过程的基础知识,包括俄歇效应的概

量子与经典方法研究粒子与固体的相互作用

电子显微技术以及电子能谱技术已成为材料表征特别是定量分析的重要工具。作为这些技术的物理基础,电子与固体相互作用的研究对定量解释实验电子显微成像或电子能谱起着至关重要的作用,成为凝聚态物理研究的一个非常重要的研究领域。本论文分别采用经典Monte Carlo方法、波动力学方法和玻姆力学方法,从不同角度

俄歇效应简介

俄歇效应(Auger effect)是原子发射的一个电子导致另一个或多个电子(俄歇电子)被发射出来而非辐射X射线(不能用光电效应解释),使原子、分子成为高阶离子的物理现象,是伴随一个电子能量降低的同时,另一个(或多个)电子能量增高的跃迁过程。“俄歇效应”是以其发现者,法国人皮埃尔·维克托·俄歇(Pi

俄歇效应研究应用

1953 年,兰德首次进行了俄歇电子能谱用于表面分析的研究。到1967年哈里斯采用电子能量微分法,使电子能量分布曲线上的俄歇谱峰通本底区分开来,才使得俄歇效应的应用走上实用阶段。图1 俄歇电子能谱仪基于俄歇效应的俄歇电子能谱仪是一种实用较广的表面分析仪器 [1]  ,它

表面元素定性分析

俄歇电子的能量仅与原子的轨道能级有关 , 与入射电子能量无关 , 也就是说与激发源无关。对于特定的元素及特定的俄歇跃迁过程 ,俄歇电子的能量是特征性的。因此可以根据俄歇电子的动能 , 定性分析样品表面的元素种类。由于每个元素会有多个俄歇峰 , 定性分析的准确度很高。 AES 技术可以对除 H 和 H

表面分析(四)

表面分析方法表面分析方法有数十种,常用的有离子探针、俄歇电子能谱分析和X射线光电子能谱分析,其次还有离子中和谱、离子散射谱、低能电子衍射、电子能量损失谱、紫外线电子能谱等技术,以及场离子显微镜分析等。离子探针分析离子探针分析,又称离子探针显微分析。它是利用电子光学方法将某些惰性气体或氧的离子加速并聚

扫描电镜的45个知识点汇总

扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。如图1所示,是扫描电子显微镜的外观图。特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三

扫描电子显微镜的二次成像原理

扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X

扫描电镜和透射电镜之间的对比

  电子显微镜  电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。  电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微

记国家大型科学仪器中心北京电子能谱中心副主任姚文清

  蕙质兰心 勤思敏行  ——记国家大型科学仪器中心—北京电子能谱中心副主任姚文清  “景昃鸣禽集,水木湛清华。”美丽的清华园作为中国乃至亚洲最著名的高等学府之一,在长达百年的办学历史中,培育出了众多精英,为我国的建设发展做出了不可磨灭的贡献。笔者眼前这位优雅从容、学识渊博的女性高级工程师姚文清,正

核医学微剂量估算系统

放射性核素已广泛应用于核医学诊断和治疗的各个方面,为医学研究开辟了新途径,对认识生命现象的本质,揭示疾病的病因及药物作用机理,特别是对肿瘤的诊断和治疗方面具有重要的意义。与其他医学方法一样,核医学中使用放射性核素的疗效和风险必须得到评估。辐射吸收剂量就是核医学和放射医学中用来量化人体所受辐射大小,评

俄歇电子能谱仪的技术发展

新一代的俄歇电子能谱仪多采用场发射电子枪,其优点是空间分辨率高,束流密度大,缺点是价格贵,维护复杂 ,对真空要求高。除 H 和 He 外,所有原子受激发后都可产生俄歇电子,通过俄歇电子能谱不但能测量样品表面的元素组分和化学态,而且分析元素范围宽,表面灵敏度高。显微AES是 AES 很有特色的分析功能

俄歇电子谱应用方向

1、通过俄歇电子谱研究化学组态:原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况。2、定性分析:对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。由此,可根据俄歇电子的动能来定性分析样品表面物质的元素种类。3、定量分析或半定量分析:俄歇

俄歇电子能谱仪的应用

近年来,俄歇电子能谱仪( AES) 在材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析方面崭露头角。AES 的优点是,在距表面 0.5 ~ 2nm 范围内, 灵敏度高、分析速度快,能探测周期表上 He 以后的所有元素。最初,俄歇电子能谱仪主要用于研究工作 ,现已成为一种常规

AES、STM、AFM的区别

AES、STM、AFM的区别主要是名称不同、工作原理不同、作用不同、一、名称不同1、AES,英文全称:Auger Electron Spectroscopy,中文称:俄歇电子能谱2、STM,英文全称: Scanning Tunneling Microscope,中文称:扫描隧道显微镜3、AFM,英文

量子与经典方法研究粒子与固体的相互作用

电子显微技术以及电子能谱技术已成为材料表征特别是定量分析的重要工具。作为这些技术的物理基础,电子与固体相互作用的研究对定量解释实验电子显微成像或电子能谱起着至关重要的作用,成为凝聚态物理研究的一个非常重要的研究领域。本论文分别采用经典Monte Carlo方法、波动力学方法和玻姆力学方法,从不同角度

扫描电镜之主要性能参数解析

  本文为大家介绍扫描电镜主要参数:分辨率、放大倍数、景深。  分辨率(Resolution)  分辨率是扫描电镜最主要的性能指标,对成像而言,它是指能分辨两点之间的最小距离;对微区成分分析而言,它是指能分析的最小区域。扫描电镜的分辨率通过测定图像中两个颗粒(或区域)间的最小距离来确定的,测定的方法

SPEES针尖参数对样品表面电子出射影响的模拟研究

报道了对扫描探针电子能谱仪(SPEES)中俄歇电子出射的理论模拟研究。通过对俄歇电子在针尖电场作用下运动轨迹的模拟以及综合考虑从针尖场发射电子到俄歇电子出射全过程中各种因素的影响,系统研究了针尖形状、针尖偏压和针尖-样品距离对俄歇电子出射效率的影响,以及出射俄歇电子束流密度在针尖电场区边缘处的分布。

科学仪器学科与技术进展的研究报告(六)

  2.核磁共振成像仪(MRI)  核磁共振波谱和成像仪器具有“量大面广”的特性。基于核磁共振原理的仪器还有石油测井仪和探水仪。核磁共振测井仪器能够提供油井内原油和水的定量分布或原油的储备信息。每年核磁共振测井量超过3000多口,取得了很好的经济效益,要求仪器具有快响应和能够适应地下高温、

科学仪器学科与技术进展的研究报告

  (四)核磁共振仪   核磁共振(NMR)在科学上具有重要的地位并对推动物理、化学、生物、医学等学科的发展起到了非常重要的作用。因此诺贝尔奖曾6次授予NMR工作者,授奖领域涉及物理(1944、1945、1952年度)、化学(1991、2002年度)、生理或医学(2003年度)。NMR的广泛应

金属和合金微观分析常用技术盘点

  一种金属或合金的性能取决于其本身的两个属性:一个是它的化学成分,另一个是它内部的组织结构。所以,对金属材料的成分和组织结构进行精确表征是金属材料研究的基本要求,也是实现性能控制的前提。材料分析的内容主要包括形貌分析、物相分析、成分分析、热性能分析、电性能分析等。本文就金属材料的形貌分析、物相分析

sem主要用于观察?

  46个知识点扫盲  1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。  2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:  

扫描电镜之主要性能参数解析

  本文为大家介绍扫描电镜主要参数:分辨率、放大倍数、景深。  分辨率(Resolution)  分辨率是扫描电镜最主要的性能指标,对成像而言,它是指能分辨两点之间的最小距离;对微区成分分析而言,它是指能分析的最小区域。扫描电镜的分辨率通过测定图像中两个颗粒(或区域)间的最小距离来确定的,测定的方法

清华两个分析实验室获科技部国家仪器中心命名

6月16日,清华大学电子能谱实验室及电子显微镜实验室被科技部正式批准为国家大型科学仪器中心。其中,以纳米扫描俄歇系统为核心仪器,依托清华建设的能谱中心正式命名为北京电子能谱中心;以300kV配有物镜球差矫正器的场发射枪分析型透射电子显微镜为核心、依托清华建设的电子显微镜中心正式命名为北京电子显微镜中