新物质态库珀对量子金属态首次证实可催生新电子设备

多年来,物理学家一直认为,使超导成为可能的电子对——库珀对是“双面娇娃”:既可形成超导态,也可形成绝缘态,但故事并没有结束!中美科学家在新一期《科学》杂志撰文称,库珀对还可像普通金属一样导电。研究人员表示,最新发现描述了一种全新物质态——量子金属态,有望催生新型电子设备,但仍需新理论予以解释。 库珀对以布朗大学物理学教授莱昂·库珀的名字命名,他因描述库伯对在实现超导性方面的作用而荣膺1972年诺贝尔奖。当电子在原子晶格中四处移动时,会产生电阻,但当电子“配对”成库珀对时,它们会“变脸”。电子是费米子,遵循泡利不相容原理——每个电子都倾向于保持自身量子态;但库珀对像玻色子,可共享相同状态,这使库珀对之间的行动能相互协调,从而将电阻降到零,产生超导性。而在二维超导薄膜中的库珀对受到无序等影响而局域化时会形成绝缘态。 最近,中国电子科技大学熊杰教授、北京大学物理学院王健教授与美国布朗大学的吉姆·瓦雷斯教授等携手,发现了超导薄......阅读全文

中国科学家首次证实量子相变中量子金属态存在

  记者11月15日从电子科技大学获悉,该校牵头与北京大学、北京师范大学、清华大学、美国布朗大学等相关专家组成的研究团队,在国际上首次完全证实高温超导纳米多孔薄膜中量子金属态的存在,为研究量子金属态提供了新思路。该成果相关论文《超导—绝缘相变中的玻色金属态》已在国际著名期刊《科学》上以“first

全新量子材料“外尔—近藤半金属”问世-可用于量子计算

  近日,美国莱斯大学和奥地利维也纳技术大学的研究人员联合研制出一种全新的材料——“外尔—近藤半金属”(Weyl-Kondo semimetal),其属于量子材料这一物质类别,可用于量子计算等领域。图片来源于网络  量子材料拥有一些很“诡异”的属性,有些属性或许可在未来的技术创新包括量子计算等领域“

“奇异金属”量子噪声实验挑战传统理论

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512950.shtm科技日报北京11月23日电 (记者张佳欣)美国莱斯大学科学家在最近的量子噪声实验中发现,一种“奇异金属”量子材料出奇地安静。发表在最新一期《科学》杂志上的研究,通过对量子电荷波动的测

“量子雪崩”解开绝缘体到金属转变之谜

布法罗大学物理学教授钟汉(音译)是一项新研究的主要作者,该研究有助于解决一个长期存在的物理谜团,即绝缘体如何通过电场转变为金属,这一过程称为电阻开关。  美国布法罗大学研究人员用“量子雪崩”解释了非导体如何变成导体,解开了绝缘体到金属转变之谜。相关研究发表在近期的《自然·通讯》杂志上。  绝缘体受到

“量子雪崩”解开绝缘体到金属转变之谜

  美国布法罗大学研究人员用“量子雪崩”解释了非导体如何变成导体,解开了绝缘体到金属转变之谜。相关研究发表在近期的《自然·通讯》杂志上。  绝缘体受到强烈的电场冲击时可变成金属,这为微电子学和超级计算机提供了诱人的可能性,但科学家尚不清楚这种电阻开关现象背后的物理原理。  研究人员表示,金属和绝缘体

金属所在碱土金属单质中发现拓扑狄拉克节线量子态

  金属单质铍具有十分罕见的性质,不但具有极轻高强的特点,而且是优异的等离子体面向材料(比如核聚变堆铍毯),是反应堆中最好的中子减速剂,是透X射线的能力最强的金属等。因此,铍在原子能、火箭、导弹、航空、宇宙航行以及冶金工业中有重要作用。同时,铍还具有特殊的电子结构,其电子输运性质接近于半金属,磁场条

金属魔法:用半导体量子点打造梦想材料

据最新一期《自然·通讯》杂志报道,包括日本RIKEN新兴物质科学中心研究人员在内的团队成功创造了一种由硫化铅半导体胶体量子点组成的“超晶格”,研究人员在这种晶格中实现了类似金属的导电性,导电性比目前的量子点显示器高100万倍,且不会影响量子限制效应。这一进步可能会彻底改变量子点技术,从而在电致发光设

俄日科学家合成世界首例量子金属

  科技部网站消息,由俄罗斯远东联邦大学、俄罗斯科学院远东分院的科学家与日本东京大学的同行组成的国际研究团队近日合成了世界上首例量子金属。远东联邦大学发布消息称,这种新材料具有以多晶硅为衬底的双层铊原子结构,当温度低于零下272摄氏度时,变为超导材料。  据该项研究专家介绍,三十多年来,关于二维电子

中科院金属所发现拓扑狄拉克节线量子态

  最近,中科院金属研究所沈阳材料科学国家(联合)实验室研究员陈星秋、博士生李荣汉等通过第一原理计算,在金属铍单质中发现拓扑狄拉克节线量子态。  金属单质铍具有十分罕见的性质,不但极轻高强,而且是优异的等离子体面向材料,但其特殊性质的机理依然成谜。另外,上述拓扑非平庸的表面态从上个世纪80年代起就先

物理所金属有机骨架中磁性量子隧穿研究获进展

  金属-有机骨架(Metal-Organic Framework,MOF)是指金属离子与有机官能团通过共价键或离子-共价键相互连接,共同构筑的长程有序晶态结构。这类MOF材料因在催化、储氢和光学元件等方面具有潜在的应用价值而受到广泛关注,是近十年来化学和材料科学领域的一个研究热点。最近几年,金

核壳型双金属纳米催化存在共轭双量子尺寸效应被揭示

近日,中国科学技术大学教授路军岭课题组/李微雪课题组/韦世强课题组在双金属纳米催化剂的尺寸效应方面取得重要进展。该研究在原子分子水平上揭示了在苯甲醇选择性氧化反应中,Au@Pd核壳型双金属催化剂的催化性能随Au核尺寸和Pd壳层厚度变化的调变规律,并首次揭示核壳型双金属纳米催化存在共轭双量子尺寸效应。

首次实现磁性隧道结双金属量子阱层中的共振隧穿

  磁性隧道结中的量子阱共振隧穿效应由于其重要的科学与应用价值而被广泛关注和研究。在半导体领域,多量子阱之间的共振隧穿已经被证实和应用,例如共振隧穿二极管、多量子阱的发光二极管等。然而,目前为止还没有在金属结构中实现多量子阱的共振隧穿。在金属量子阱层中由于各种退相干因素使得电子很难保持相干性,从而使

摘掉“量子医学”的量子“高帽”

   量子力学是描写微观世界的一个物理学分支,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学,都是以量子力学为基础。  量子力学同时也给人们提供了新的关于自然界的表述方法和思考方法。在许多现代技术装备中,量子力学的效应起到

量子纠缠是量子电池必不可少的量子资源

  2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。  关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的

量子纠缠是量子电池必不可少的量子资源

  2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或量子纠缠在量子电池产生可提取功的过程中是必不可少的量子资源。相关研究成果近日发表在《物理评论快报》上。  关于量子电池的研究是近些年来颇受关注的量子科技问题,其中的

量子纠缠是量子电池必不可少的量子资源

原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488378.shtm 中心自旋量子电池图(受访者供图) 2022年诺贝尔物理学奖让“量子纠缠”再次引发全世界关注。近日,中科院精密测量院科研团队与西北大学研究人员合作,首次证明了量子相干或

王健教授及合作者的最新成果:量子金属态的证实

  量子材料与量子相变是本世纪凝聚态物理与材料领域的研究热点。量子相变与传统的热力学相变不同,是在绝对零度下调节非热力学参量而发生的相变,相变点附近量子涨落而非热涨落起了重要作用。作为量子相变的经典范例,二维超导-绝缘体相变以及超导-金属相变研究获得了2015年美国凝聚态物理最高奖巴克利奖。在量子相

量子幽灵

  一种新发现的被称为"集体诱导透明"(CIT)的现象导致原子组突然停止反射特定频率的光线。CIT是通过将镱原子限制在一个光腔内--基本上是一个微小的光盒--然后用激光轰击它们而发现的。尽管激光的光线会从原子上反弹到一个点上,但随着光线频率的调整,一个透明的窗口出现了,在这个窗口中,光线可以不受阻碍

合肥研究院等揭示外尔半金属TaAs的不饱和量子磁性

  近日,中国科学院合肥物质科学研究院强磁场科学中心副研究员张警蕾、北京大学研究员贾爽、南方科技大学教授卢海舟等人组成的研究团队利用稳态强磁场装置揭示了外尔半金属TaAs的不饱和量子磁性。相关成果以Non-saturating quantum magnetization in Weyl semime

绝对量子效率是外量子效率吗

不是。1、绝对量子效率亦称量子产额在光合作用中每吸收一个光量子所固定的二氧化碳分子数或释放氧气的分子数,由于所得数值为小数故通常用其道术量子需要量来表示。2、外量子效率是指单位时间内输出发光二极管外的光子数目与注入的载流子数目之比。

新物质态库珀对量子金属态首次证实-可催生新电子设备

   多年来,物理学家一直认为,使超导成为可能的电子对——库珀对是“双面娇娃”:既可形成超导态,也可形成绝缘态,但故事并没有结束!中美科学家在新一期《科学》杂志撰文称,库珀对还可像普通金属一样导电。研究人员表示,最新发现描述了一种全新物质态——量子金属态,有望催生新型电子设备,但仍需新理论予以解释。

国科大等提出新的拓扑量子物态——二维外尔半准金属态

  拓扑物态和二维磁性是当前凝聚态物理前沿研究中令人着迷的两大主题,两者结合是否会产生新的量子物态成为人们关注的重要科学问题。最近,中国科学院大学教授苏刚团队与新加坡科技设计大学教授杨声远团队合作回答了这一问题,他们首次提出了一种新的拓扑量子物态——“二维外尔半准金属态(2D Weyl half-s

“脆弱”的量子比特,如何成为量子计算主心骨

近来,有关量子计算的新闻不断刷屏。量子计算机的突破,为我们描绘着更快、更强的未来计算场景。然而,对于大多数人来讲,量子计算机依然是“不明觉厉”的存在。我们可能会发现,表述量子计算机能力水平的一个重要参数是它的量子比特数。无论是我国66比特的可编程超导量子计算原型机“祖冲之二号”,还是近日IBM公司宣

50个量子比特!量子“霸权”时代来临啦!

   在美国电气和电子工程师协会(IEEE)近日召开的计算机未来行业峰会上,IBM人工智能(AI)和量子计算机部门副主席达里奥·吉尔宣布一项里程碑式的进展:IBM已成功建成并测试全球首台50个量子比特的量子计算机原型,向验证量子计算机超越传统超级计算机的“量子霸权”时代迈出了关键一步。公司还将现有的

首个微波量子雷达实现“量子优越性”

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505246.shtm法国国家科学院里昂高等师范学院的科学家最近开发出了首个基于微波的量子雷达,其性能比现有传统雷达高20%,实现了所谓的“量子优越性”。相关研究发表于最新一期《自然·物理学》杂志。

量子系统创51个量子比特新纪录

  能模拟化学反应 研究原子间相互作用  据《新科学家》杂志网站7月18日报道,美国哈佛大学研究团队在近日召开的莫斯科国际量子技术大会上宣布,他们已经制造出迄今最强量子系统,其拥有51个量子比特(Qubit),能模拟一种化学反应,研究原子间相互作用。此前,谷歌公司在4月份曾强势宣布,将在今年底打造出

高效量子引擎开发或将推动量子革命

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/509461.shtm

高效量子引擎开发或将推动量子革命

  日本冲绳科学技术大学院大学(OIST)、德国凯泽斯劳滕大学和斯图加特大学的科学家团队合作,利用量子力学原理设计并制造出一种引擎。这是根据粒子在极小尺度上遵守的特殊规则开发的引擎,它不依赖于传统的燃料燃烧方式。相关论文发表在27日《自然》杂志上。  自然界中的所有粒子都可根据其特殊的量子特性分为玻

量子测量是指利用量子特殊的效应

量子测量是指利用量子特殊的效应是正确的。一、在量子力学之中,所谓的“测量”需要有较严谨的定义,而特别称之为量子测量。量子测量不同于一般经典力学中的测量,量子测量会对被测量子系统产生影响,比如改变被测量子系统的状态。二、处于相同状态的量子系统被测量后可能得到完全不同的结果,这些结果符合一定的概率分布。

如何对抗量子计算攻击?“后量子密码”保安全

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504833.shtm“现代公钥密码学自20世纪70年代诞生起,业已成为当今和未来各种网络形态的安全信任根基。而随着量子计算的发展,未来可能会彻底颠覆现代公钥密码学。”近日,在第三届雁栖湖国际后量子密码标准