密码子与反密码子的基本介绍

1.密码子:DNA或mRNA的四种碱基共组成64个三联体密码子。 2.终止密码子:又称无义密码子,指3个肽链终止密码,不编码氨基酸。 3.携带稀有氨基酸的tRNA也能识别终止密码子。 4.简并密码:由多种密码子编码一个氨基酸的现象。 5.摇摆性: (1)定义:指一种反密码子能够与不同的密码子发生碱基配对; (2)决定因素:摇摆性取决于反密码子噗噜空间结构。tRNA空间结构中,相邻碱基存在着堆集力,反密码子5′端的一个碱基处在堆集碱基的末端,所受堆集力小,自由度较大,而且常为修饰过的碱基,无A和U,A修饰为I(次黄),与U、C、A配对。 6.同功tRNA:携带AA相同而反密码子不同的一组tRNA,一组同功tRNA由同一种氨酰基-tRNA合成酶催化而携带氨基酸。 7.有时拥有相同反密码子的tRNA有好几种,它们的结构有很大的差异,有不同的基因编码。......阅读全文

密码子与反密码子的基本介绍

  1.密码子:DNA或mRNA的四种碱基共组成64个三联体密码子。  2.终止密码子:又称无义密码子,指3个肽链终止密码,不编码氨基酸。  3.携带稀有氨基酸的tRNA也能识别终止密码子。  4.简并密码:由多种密码子编码一个氨基酸的现象。  5.摇摆性:  (1)定义:指一种反密码子能够与不同的

密码子与反密码子的功能差异

1.密码子:DNA或mRNA的四种碱基共组成64个三联体密码子。2.终止密码子:又称无义密码子,指3个肽链终止密码,不编码氨基酸。3.携带稀有氨基酸的tRNA也能识别终止密码子。4.简并密码:由多种密码子编码一个氨基酸的现象。5.摇摆性:(1)定义:指一种反密码子能够与不同的密码子发生碱基配对;(2

密码子与反密码子的功能差异

1.密码子:DNA或mRNA的四种碱基共组成64个三联体密码子。2.终止密码子:又称无义密码子,指3个肽链终止密码,不编码氨基酸。3.携带稀有氨基酸的tRNA也能识别终止密码子。4.简并密码:由多种密码子编码一个氨基酸的现象。5.摇摆性:(1)定义:指一种反密码子能够与不同的密码子发生碱基配对;(2

反密码子的基本信息介绍

  anticodon中除有常见的4种碱基外还出现次黄嘌呤(I) 其可最大限度阅读mRNA上的信息,降低突变引起的误差。所以实际上反密码子少于61种。  在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上。  已知一种tRNA只能携带一种

反密码子

反密码子(anticodon):RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。 tRNA分子二级结构的反密码环中部的三个相邻核苷酸组成反密码子。它们与结合在核糖

关于反密码子的基本信息介绍

  反密码子是在tRNA的三叶草形二级结构反密码臂的中部,可与mRNA中的三联体密码子形成碱基配对的三个相邻碱基。在蛋白质的合成中,起解读密码、将相应的氨基酸引入核糖体A和P位点的作用。 [1]  反密码子(anticodon):RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一

遗传信息、密码子、反密码子的区别与联系

遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基

概述遗传信息、密码子、反密码子的区别与联系

  遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(

反密码子茎的定义

中文名称反密码子茎英文名称anticodon stem定  义转移核糖核酸中与反密码子环相连的茎区,通常是含有5对碱基的螺旋。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

反密码子臂的定义

中文名称反密码子臂英文名称anticodon arm定  义由反密码子茎和反密码子环构成,是转移核糖核酸高级结构中的一部分区域。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

反密码子环的定义

在氨基酸臂对面的单链环称反密码子环(anticodon loop),该环含有由三个核苷酸残基组成的反密码子。

细胞化学词汇反密码子

反密码子是在tRNA的三叶草形二级结构反密码臂的中部,可与mRNA中的三联体密码子形成碱基配对的三个相邻碱基。在蛋白质的合成中,起解读密码、将相应的氨基酸引入核糖体A和P位点的作用。 反密码子(anticodon):RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。

关于密码子密码子的起源介绍

  除了少数的不同之外,地球上已知生物的遗传密码均非常接近;因此根据演化论,遗传密码应在生命历史中很早期就出现。现有的证据表明遗传密码的设定并非是随机的结果,有一种解释是,一些氨基酸和它们相对应的密码子有选择性的化学结合力,这就显示现 在复杂的蛋白质制造过程可能并不是一早就存在,而最初的蛋白质很可能

细胞化学词汇反密码子茎

中文名称:反密码子茎英文名称:anticodon stem定  义:转移核糖核酸中与反密码子环相连的茎区,通常是含有5对碱基的螺旋。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

细胞化学词汇反密码子环

中文名称:反密码子环外文名称:anticodon loop定       义:在氨基酸臂对面的单链环称反密码子环(anticodon loop),该环含有由三个核苷酸残基组成的反密码子。

细胞化学词汇反密码子臂

中文名称:反密码子臂英文名称:anticodon arm定  义:由反密码子茎和反密码子环构成,是转移核糖核酸高级结构中的一部分区域。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

关于副密码子的基本介绍

  对于终产物为RNA的基因,只要进行转录并进行转录后的处理,就完成了基因表达的全过程;而对于终产物是蛋白质的基因,还必须将mRNA翻译成蛋白质。  tRNA 分子上决定其携带氨基酸分子的区域称为副密码子。

关于同义密码子的基本介绍

  编码同一氨基酸的密码子称为同义密码子。  同一种氨基酸有两个或更多密码子,称为密码子的简并性。由于密码子具有简并性,一个氨基酸的密码子大多不止一个,这些密码子就为同义密码子。  同义密码子通常只在第3位碱基上不同,这样可减少有害突变。密码子第3位碱基与tRNA反密码子不严格遵从碱基配对规律(摆动

关于起始密码子的基本介绍

  起始密码子,信使RNA(mRNA)的开放阅读框架区中,每3个相邻的核苷酸为一组,代表一种氨基酸,这种存在于mRNA开放阅读框架区的三联体形式的核苷酸序列称为密码子(codon)。由A、U、C、G四种核苷酸可组成64个密码子,其中有61个密码子可编码氨基酸。AUG既编码甲硫氨酸,又作为多肽链合成的

关于终止密码子的基本介绍

  终止密码: UAG,UAA,UGA是终止密码子。相应的DNA上的终止密码子序列是TAG,TAA,TGA。  终止密码子又称“无意义密码子”。不编码任何氨基酸的密码子,如UAA,UAG和UGA。当肽链延长到这3个密码子的任何一个时,即行停止,从而使已合成的多肽链释放出来,因此终止密码子相当于1个停

反密码子的位置和功能特点

反密码子是在tRNA的三叶草形二级结构反密码臂的中部,可与mRNA中的三联体密码子形成碱基配对的三个相邻碱基。在蛋白质的合成中,起解读密码、将相应的氨基酸引入核糖体A和P位点的作用。

反密码子的结构和功能特点

反密码子(anticodon):RNA链经过折叠,看上去像三叶草的叶形,其一端是携带氨基酸的部位,另一端有3个碱基。每个tRNA(transfer RNA)的这3个碱基可以与mRNA上的密码子互补配对,因而叫反密码子。 tRNA分子二级结构的反密码环中部的三个相邻核苷酸组成反密码子。它们与结合在核糖

关于密码子的基本信息介绍

  密码子(codon)是指信使RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸的规律。  信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。而在信使RNA分子上的三个碱基能决定一个氨

关于琥珀密码子的基本介绍

  琥珀密码子(amber codon)指mRNA的多核苷酸链中的终止密码子(UAG),它引起蛋白质翻译的中止。这个名字的由来是因为这个密码子是在大肠杆菌噬菌体T4的“琥珀型”突变种中发现的,T4突变种的发现者是德国人H.Bernstein,而Bernstein这个姓在德语中意为“琥珀”。当mRNA

密码子种类介绍

构成RNA的碱基有四种,每三个碱基的开始两个决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。怎样决定20种氨基酸呢?仔细分析20种氨基酸的密码子表,就可以发现,同一种氨基酸可以由几个不同的密码子来决定,起始密码子为AUG(甲硫氨酸),另外还有UAA、UAG

副密码子的概念介绍

对于终产物为RNA的基因,只要进行转录并进行转录后的处理,就完成了基因表达的全过程;而对于终产物是蛋白质的基因,还必须将mRNA翻译成蛋白质。

副密码子的特点介绍

(1)一种氨酰tRNA 合成酶可以识别一组同功tRNA (多达6个),它们的副密码子有共同的特征。(2)副密码子没有固定的位置,亦可能不止1个碱基对。(3)尽管副密码子不能单独与氨基酸发生作用,但副密码子可能与氨基酸的侧链基团有某种相应性。(4)并非所有的tRNA氨基酸柄上的G3·U70都是它的副密

副密码子的概念介绍

  mRNA的核苷酸顺序与蛋白质的氨基酸顺序之间在结构上并没有直接的相应关系,二者也不发生直接的相互作用。在这两种不同的遗传语言之间,必须通过译员才能互相沟通。扮演这种译员角色的就是各种tRNA分子。如果没有tRNA的存在,也就无所谓密码子了。因此密码子的意义并不是单独由mRNA决定的,而是由mRN

副密码子的特点介绍

(1)一种氨酰tRNA 合成酶可以识别一组同功tRNA (多达6个),它们的副密码子有共同的特征。(2)副密码子没有固定的位置,亦可能不止1个碱基对。(3)尽管副密码子不能单独与氨基酸发生作用,但副密码子可能与氨基酸的侧链基团有某种相应性。(4)并非所有的tRNA氨基酸柄上的G3·U70都是它的副密

关于密码子的种类介绍

  构成RNA的碱基有四种,每三个碱基的开始两个决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。怎样决定20种氨基酸呢?仔细分析20种氨基酸的密码子表,就可以发现,同一种氨基酸可以由几个不同的密码子来决定,起始密码子为AUG(甲硫氨酸),另外还有UAA、U