毛细管电泳质谱联用(CEMS)技术的介绍

Olivares,Smith和Henion等分别在1987-1988年提出毛细管电泳-质谱联用(CE-MS)技术,在CE中,紫外检测器由于通过样品的光程较短导致灵敏度较低,特别对一些紫外吸收较弱的化合物的检测。近年由于大气压电离(API)、电喷雾电离(ESI)及新型质谱仪的快速扫描等新技术的出现,足以满足CE窄峰形的特点,使得CE-MS,CE-MS-MS均得到快速发展,并正在成为实验室的重要常规分析方法之一。......阅读全文

毛细管电泳质谱联用(CEMS)技术的介绍

  Olivares,Smith和Henion等分别在1987-1988年提出毛细管电泳-质谱联用(CE-MS)技术,在CE中,紫外检测器由于通过样品的光程较短导致灵敏度较低,特别对一些紫外吸收较弱的化合物的检测。近年由于大气压电离(API)、电喷雾电离(ESI)及新型质谱仪的快速扫描等新技术的出现

国产质谱产业化难?CEMS联用等接口或为其提供弯道超车

  质谱仪全球市场增长良好,国内市场国际巨头垄断  全球质谱市场2015年实现了49.483亿美元的产值,2016-2022年间该市场规模将8.1%的年复合增长率增长。质谱主要的三大应用领域是生物医药、食品和环境,其中制药领域占全球市场最大的份额。据来源:zion marketresearch  2

毛细管电泳与质谱联用技术

毛细管电泳(capillary electrophoresis,CE)是80年代初发展起来的一种基于待分离物组份间淌度和分配行为差异而实现分离的电泳新技术。具有快速、高效、分辨率高、重复性好、易于自动化等优点。质谱分析技术(MS)是通过对样品离子的质量和强度的测定进行定量和结构分析的一种分析方法。具

毛细管电泳的质谱联用相关介绍

  CE的许多模式,如CZE,MEKC,CITP,CGE和ACE以及CEC等都能与质谱检测器成功地连接,其中应用较多的仍是CZE-MS。MEKC由于添加表面活性剂形成的胶束会抑制样品离子的信号,所以MEKC-MS使用较少。与CE相连的MS最常用的电离方式是ESI,可以直接把样品分子从液相转移到气相,

贝克曼库尔特:5年研发结晶-最优化的CEMS系统

  2010年10月18~19日,2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议在上海复旦大学复宣大酒店隆重召开。美国贝克曼库尔特公司作为本届大会的参展厂商,主要展出其高灵敏度的多孔材料喷口毛细管电泳-质谱联用解决方案。分析测试百科网在场记者进行了即兴采访,以下是图片和产品相关

质谱联用技术

质谱仪是一种很好的定性鉴定用仪器,对混合物的分析无能为力。色谱仪是一种很好的分离用仪器,但定性能力很差,二者结合起来,则能发挥各自专长,使分离和鉴定同时进行。因此,早在20世纪60年代就开始了气相色谱-质谱联用技术的研究,并出现了早期的气相色谱-质谱联用仪。在70年代末,这种联用仪器已经达到很高的水

毛细管电泳的质谱联用

Olivares,Smith和Henion等分别在1987-1988年提出毛细管电泳-质谱联用(CE-MS)技术,在CE中,紫外检测器由于通过样品的光程较短导致灵敏度较低,特别对一些紫外吸收较弱的化合物的检测。近年由于大气压电离(API)、电喷雾电离(ESI)及新型质谱仪的快速扫描等新技术的出现,足

毛细管电泳的质谱联用

Olivares,Smith和Henion等分别在1987-1988年提出毛细管电泳-质谱联用(CE-MS)技术,在CE中,紫外检测器由于通过样品的光程较短导致灵敏度较低,特别对一些紫外吸收较弱的化合物的检测。近年由于大气压电离(API)、电喷雾电离(ESI)及新型质谱仪的快速扫描等新技术的出现,足

质谱及其联用技术

(一)质谱(MS)法常用的离子化方式:基本原理是将供试物分子经一定离子化方式,如电子轰击或其它离子化方式,一般是把分子中的电子打掉一个成为M+,继之裂解成一系列碎片离子,再通过磁场使不同质荷比(m/z)的正离子分离并记录其相对强度,绘出MS图。即可进行元素分析、分子量测定、分子式确定和分子结构的解析

色谱质谱联用技术

  色谱质谱联用技术  一、联用技术的必要性  每种分析方法都有其特长和局限性。在线联用不仅能取长补短,而且还具有协同作用,获得两种技术单独使用时所不具备的某些功能。  色谱用于分离,而光谱用于结构鉴定,两者联用,不仅可以对混合物中的各未知组分进行定性,也可用于定量分析。  二、气相色谱-质谱联用(

刘虎威教授:毛细管电泳质谱联用技术的新进展

  2014年4月21日下午,第十届全国生物医药色谱及相关技术学术交流会大会报告在威海召开。来自北京大学化学与分子工程学院的刘虎威教授作为本次大会的嘉宾,给我们带来了题为《毛细管电泳-质谱联用技术的新进展》的报告。北京大学化学与分子工程学院 刘虎威教授  刘虎威教授表示CE最成功的应用领域

区带毛细管电泳在生物碱类成分测定中的应用

  毛细管电泳-毛细管电泳-质谱联用  Olivares,Smith和Henion等分别在1987-1988年提出毛细管电泳-质谱联用(CE-MS)技术,在CE中,紫外检测器由于通过样品的光程较短导致灵敏度较低,特别对一些紫外吸收较弱的化合物的检测。近年由于大气压电离(API)、电喷雾电离(ESI)

CHINA-LAB-2011技术研讨会

北京大学 刘虎威教授   来自北京大学的刘虎威教授带来了题为《毛细管电泳-质谱联用技术的新进展》报告。   毛细管电泳(CE)技术包括毛细管区带电泳(CZE)、胶束电动色谱(MEKC)、毛细管电色谱(CEC)、毛细管凝胶电泳(CGE)、毛细管等电聚焦电泳(CIEF)、毛细管等速

液质联用中的进样与质谱技术

ESI和APCI是大气压离子化(API)技术,与经典的质谱离子源处于低压(真空)条件下不同,样品的离子化是在大气压下进行的,因此APIMS要有从有从大气压之真空的接口及离子传输等装置。API是软电离技术,得到的质谱中主要是分子量信息。对于未知物分析,准确质量测定以及由此得到的化合物元素组成(分子式)

色谱质谱联用

(1)气相色谱-质谱联用在色谱联用仪中,气相色谱-质谱(GC-MS)联用仪是开发最早的色谱联用仪器。由于从气相色谱柱分离后的样品呈气态,流动相也是气体,与质谱的进样要求相匹配,最容易将这两种仪器联用。因此最早实现商品化的色谱联用仪器就是气相色谱-质谱联用仪。现在小型台式GC-MS已成为很多实验室的常

色谱质谱联用

  色谱质谱联用中最典型的应用为气相色谱质谱法(Gas Chromatography-Mass Spectrometry, GC-MS)以及液相色谱质谱法(Liquid Chromatography-Mass Spectrometry)。  其优势在于通过色谱质谱的联用,解决了质谱中如果离子之间质量

气相色谱质谱联用技术讲解

  转眼一周过半,继续与小伙伴们分享专业技术知识。今天分享的话题是有关气相色谱-质谱联用技术的,今天推送的主要内容有——  仪器系统|一  (一)GC-MS系统的组成  气质联用仪是分析仪器中较早实现联用技术的仪器。自1957年霍姆斯和莫雷尔首次实现气相色谱和质谱联用以后,这一技术得到长足的发展。在

关于质谱联用的不同模式介绍

  CE的许多模式,如CZE,MEKC,CITP,CGE和ACE以及CEC等都能与质谱检测器成功地连接,其中应用较多的仍是CZE-MS。MEKC由于添加表面活性剂形成的胶束会抑制样品离子的信号,所以MEKC-MS使用较少。与CE相连的MS最常用的电离方式是ESI,可以直接把样品分子从液相转移到气相,

气相色谱质谱联用技术的应用

GC-MS联用在分析检测和研究的许多领域中起着越来越重要的作用,特别是在许多有机化合物常规检测工作中成为一种必备的工具。如环保领域在检测许多有机污染物,特别是一些浓度较低的有机化合物,如二口恶英等的标准方法中就规定用GC-MS;药物研究、生产、质控以及进出口的许多环节中都要用到GC-MS;法庭科学中

液相色谱质谱联用技术的接口

由于液相洗脱剂的流量较气相色谱的载气要大得多,因而液相色谱和质谱联机关键装置是“接口”。其作用如下:①将洗脱剂及样品分子汽化;②分离去大量的洗脱剂分子;③完成对样品分子的电离;④在样品分子已电离的情况下,最好能进行碰撞诱导断裂(CID)。    近30年来,发展了许多接口技术,如传送带接口,粒子束接

实验室分析方法质谱分析气相色谱质谱联用仪使用范围

质谱:纯物质结构分析。色谱:化合物分离,定性能力差。色谱-质谱联用:共同优点。GC-MS;LC-MS;CE-MS,色谱是质谱的进样及分离系统;质谱是色谱的检测器。主要问题:接口技术;除去色谱中大量的流动相分子。适用范围:适用于挥发度低、难气化、极性强、相对分子质量大及热稳定性差的样品。

毛细管电泳色谱仪检测技术

毛细管电泳色谱仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用带电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。CE的毛细管极细,

多通道微流控芯片质谱联用接口的研究与应用

  2015年10月17日,第二届全国质谱分析学术报告会在浙江大学紫荆港校区体育馆盛大开幕,在5位院士的精彩报告后,多位学者做了高水平的大会报告。   清华大学林金明教授:多通道微流控芯片-质谱联用接口的研究与应用  清华大学林金明教授做题为《多通道微流控芯片-质谱联用接口的研

气质联用仪GCMS质谱联用(GCMS)技术原理

气相色谱-质谱联用(GC-MS)技术工作原理GC-MS被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和MS的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行

SCIEX发布在线毛细管电泳质谱联用系统Intabio™-ZT

6月5日,11:00 a.m. 美国中部夏令时间马萨诸塞州弗雷明汉——在ASMS 2023上,生命科学分析技术制造商SCIEX推出了Intabio™ ZT系统,这是一个在单一平台上结合全柱成像等电聚焦毛细管电泳(icIEF)、紫外检测器(UV)和质谱(MS)工作流程的联用系统。icIEF UV/MS

SCIEX发布在线毛细管电泳质谱联用系统Intabio™-ZT

6月5日,11:00 a.m. 美国中部夏令时间马萨诸塞州弗雷明汉——在ASMS 2023上,生命科学分析技术制造商SCIEX推出了Intabio™ ZT系统,这是一个在单一平台上结合全柱成像等电聚焦毛细管电泳(icIEF)、紫外检测器(UV)和质谱(MS)工作流程的联用系统。icIEF UV/MS

质谱联用气相色谱技术测定方法

总离子流色谱法(totalionizationchromatography,TIC)——类似于GC图谱,用于定量。反复扫描法(repetitivescanningmethod,RSM)——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。质量色谱法(masschromatog

质谱联用气相色谱技术接口作用

接口作用:1 压力匹配——质谱离子源的真空度在10-3Pa,而GC色谱柱出口压力高达105Pa,接口的作用就是要使两者压力匹配。2 组分浓缩——从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源。

质谱联用(GCMS)技术测定方法

质谱联用(GC-MS)技术测定方法总离子流色谱法(totalionizationchromatography,TIC)——类似于GC图谱,用于定量。反复扫描法(repetitivescanningmethod,RSM)——按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。质量

液质联用中的质谱——串联质谱篇(上)

  在连接了前面的离子源、离子传输后,质谱的质量分析器还可以空间或时间的方式进行串联分析(MS/MS或MSn)。此时,第一个质量分析器用于选择与分离母离子(Parent Ion,又称前体离子Precursor Ion),被选择的母离子碎裂后产生子离子(Daughter Ion,又称产物离子Produ