Antpedia LOGO WIKI资讯

中国科大实现半导体超快量子控制非逻辑单元

近日,中国科学技术大学中科院量子信息重点实验室的教授郭国平、肖明与合作者成功实现了半导体量子点体系的两个电荷量子比特的控制非逻辑门。该研究成果发表在7月17日的Nature Communications上。 现代计算机的核心部件为全电控的半导体芯片CPU。开发与之兼容的半导体全电控量子芯片是量子计算机研制的重要方向之一。郭国平研究组致力于半导体量子芯片的开发,经过两年的摸索和积累,利用标准半导体微纳加工工艺设计制备了多种半导体强耦合电控量子点结构,使两量子比特间的耦合强度超过100微电子伏特;同时不断改进量子比特逻辑操控中的高频脉冲信号的精确控制等问题,使得脉冲序列间的精度控制在皮秒量级,并最终实现了两个电荷量子比特的控制非门,其操控最短在200皮秒以内完成。相对于国际上目前电子自旋两量子比特的最高水平,新的半导体两量子比特的操控速度提高了数百倍。 原则上,有单比特逻辑单元和两比特控制非逻辑单元就可以实现任意量子计算过程......阅读全文

我国半导体量子芯片研究获突破:实现三量子比特逻辑门

  记者从中国科学技术大学获悉,该校郭光灿院士团队近期在半导体量子芯片研制方面再获新进展,创新性地制备了半导体六量子点芯片,在国际上首次实现了半导体体系中的三量子比特逻辑门操控,为未来研制集成化半导体量子芯片迈出坚实一步。国际应用物理学权威期刊《物理评论应用》日前发表了该成果。  开发与现代半导体工

半导体量子比特耦合与扩展取得新进展

  随着量子计算的发展,近年来半导体量子比特的性能大幅提升。业界普遍认为至少百位以上的量子比特,才能让量子计算的优势充分显现,实现多量子比特集成与扩展逐渐成为研究人员的攻关目标。其中,利用微波谐振腔中的光子作为媒介实现比特间相互作用被认为是最具潜力的扩展方式之一。 近日,中国

中国科大研究成功新型量子比特编码

  中国科学技术大学教授、中国科学院院士郭光灿领导的中科院量子信息重点实验室在新型量子比特编码方面取得新进展。该实验室郭国平研究组及合作者首次在砷化镓半导体量子芯片中成功实现量子相干特性好、操控速度快、可控性强的电控新型编码量子比特,研究成果发表在2月25日出版的《物理评论快报》上。  与现代计算机

中国科学技术大学实现半导体超快量子控制非逻辑单元

  中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在固态量子芯片研究方面取得重要进展。实验室郭国平教授、肖明教授与合作者成功实现了半导体量子点体系的两个电荷量子比特的控制非逻辑门。成果近日发表在《自然·通讯》上。  逻辑门是计算机运算的基本单元,也就是集成电路上的基本组件。现代计算机的核心

中国科学技术大学实现半导体超快量子控制非逻辑单元

   中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在固态量子芯片研究方面取得重要进展。实验室郭国平教授、肖明教授与合作者成功实现了半导体量子点体系的两个电荷量子比特的控制非逻辑门,成果近日发表在《自然·通讯》上。   逻辑门是计算机运算的基本单元,也就是集成电路上的基本组件。现代计算机的

半导体量子点作为光催化二氧化碳还原催化剂

  在自然界中,光合生物能够在太阳光的照射下利用光合色素将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气),该过程是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。受此启发,利用可见光还原的方式将二氧化碳转化为具有高附加值的化学品和/或太阳能燃料(如CO、HCOOH、CH3OH、CH4

我国科学家再获多项研究成果

  肺泡发育之谜揭开  本报北京2月21日电 日前出版的国际学术期刊《发育细胞》以封面文章的形式,发表了北京生命科学研究所汤楠实验室的研究论文。该研究在世界上首次采用活体成像技术,直观、实时地观测了肺泡的发育过程,提出了一个机械力和生长因子共同调控肺泡发育的全新模型。  肺泡的发育过程非常复杂,汤楠

半导体研究所成功推出系列太赫兹量子级联激光器产品

近年来,太赫兹技术发展迅速,应用越来越广泛,是当前的热门研究领域。由于太赫兹量子级联激光器是产生太赫兹辐射的重要器件,因此科学家开始钻研太赫兹量子级联激光器的研究中,而就在近日,我国太赫兹量子级联激光器领域有了重大进展,半导体研究所成功研制出系列太赫兹量子级联激光器产品。   &

我国量子计算研究获进展 实现三量子点高效调控

  近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。   开发

我国在量子计算研究获进展 实现三量子点半导体调控

  近期,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在半导体量子计算芯片研究方面取得新进展。实验室郭国平研究组创新性地引入第三个量子点作为控制参数,在保证新型杂化量子比特相干性的前提下,极大地增强了杂化量子比特的可控性。国际应用物理学顶级期刊《应用物理评论》日前发表了该成果。  开发与

量子点发光原理

  量子点应该算是现在研究很热门的一个材料,尤其是它优异的发光性质,很可能是下一代LED中最有潜力的发光层。那么量子点为什么有这些优异的性质?我们还是要需要理解它的简单的发光机理。这里我们先简单介绍一下量子点的能级结构,因为所有的性质都是由能级结构决定的。同时,我还会根据量子点的发光过程,简单介绍下

“门外汉”也能快速上手量子编程

  记者近日从合肥高新区获悉,由合肥本源量子计算科技有限公司联合中科院量子信息重点实验室发布的“本源量子计算云平台”日前上线。这也是世界上首个上线的基于半导体量子芯片的量子计算云平台,平台同时采用了超导量子芯片。  量子云是以量子计算为核心的云服务。中国科技大学郭光灿院士团队研发的本源量子计算云平台

半导体量子芯片开发获重要进展

  “量子芯片”是未来量子计算机的“大脑”。中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室郭国平研究组,在量子芯片开发领域的一项重要进展,首次在砷化镓半导体量子芯片中成功实现了量子相干特性好、操控速度快、可控性强的电控新型编码量子比特。该成果近日在国际权威杂志《物理评论快报》发表。   郭

荧光量子产率原理及应用

基本概念及特征量子点:(Quantum dot,QD)又称半导体纳米晶,是导带电子、价带空穴及激子在三个空间方向上受束缚的半导体纳米结构,其三维尺寸通常在2-10nm范围内,呈近似球形,市场上使用的量子点材料多为核壳结构。 量子点材料:分为元素半导体量子点、化合物半导体量子点、

为量子计算开路 半导体纳米设备还能这么用

  日本理化学研究所(理研)近日宣布,利用由广泛用于工业领域的天然硅制成的半导体纳米设备,实现了具有量子计算所必需的高精度的“量子比特”(qubit)。由于可以使用现有的半导体集成化技术安装量子比特元件,因此,这次的成果将是实现大规模量子计算机的重要一步。  本次研究中使用的样本的电子显微镜

郭光灿院士:“量子计算器”可能先出现

郭光灿院士在论坛上  “有人宣传说量子什么技术马上可以走进千家万户,这是不对的,量子技术距离真正的应用还早。”11月15日,中国科学院院士、中国科学院量子信息重点实验室主任郭光灿在“中国高新技术论坛——颠覆性创新技术主题论坛”上就量子计算机相关主题发表的演讲中提到,近几年量子信息“炒作太过分”。  

中国科学院院士郭光灿:量子信息勿过分炒作

  “有人宣传说量子什么技术马上可以走进千家万户,这是不对的,量子技术距离真正的应用还早。”11月15日,中国科学院院士、中国科学院量子信息重点实验室主任郭光灿在“中国高新技术论坛——颠覆性创新技术主题论坛”上就量子计算机相关主题发表的演讲中提到,近几年量子信息“炒作太过分”。  “量子世界确实神奇

半导体所等在量子点光子相干物理研究中取得新进展

  未来量子信息应用最具挑战性问题是单量子态的检测和操纵,这是因为量子态很脆弱,一旦融入外在环境,其量子性质很容易被破坏。S. Haroche和D. Wineland通过微波腔囚禁单个原子、电势阱俘获带电离子等实验手段,在单个光子态的测量和操纵方面做出了奠基性的工作,获得了2012年度

中国科大固态量子芯片研究取得重要进展

  近日,中国科学技术大学郭光灿院士领导的中科院量子信息重点实验室在固态量子芯片研究方面取得重要进展,成功实现了半导体量子点体系的两个电荷量子比特的操控最短在百皮秒量级内完成。与国际上目前最高水平相比,操控速度提高了数百倍。7月17日,国际权威期刊《自然-通讯》发表该项研究成果。  在国家重点基础研

太赫兹技术里程碑

1994年Federico Capasso和同事卓以和等人在贝尔实验室率先发明量子级联激光器。这被视为半导体激光领域的一次革命。2000年,我国科学家李爱珍(现任美国科学院院士)的课题组在亚洲率先研制出5至8微米波段半导体量子级联激光器,从而使中国进入了掌握此类激光器研制技术的国家行列。  量子级联

安徽将成量子研究全球高地

  据新安晚报报道, 创建量子信息科学国家实验室,是安徽科技创新方面的“一号工程”。今年7月,中国科学院量子信息与量子科技创新研究院正式揭牌,为组建量子信息科学国家实验室创造条件、奠定基础。日前,新安晚报、安徽网、大皖客户端记者来到合肥高新区探访,了解“量子”最新进展。  “量子创新院”已经揭牌  

量子点材料将改善LED 为照明产业做贡献

  量子点属于一大类新材料——溶液纳米晶中的一种。溶液纳米晶具有晶体和溶液的双重性质,量子点是其中马上具有突破性工业应用的材料。  与其他纳米晶材料不同,量子点是以半导体晶体为基础的。尺寸在1~100纳米之间,每一个粒子都是单晶。量子点的名字,来源于半导体纳米晶的量子限域效应,或者量子尺寸效应。当半

量子点材料:现状、机遇和挑战

  量子点属于一大类新材料——溶液纳米晶中的一种。溶液纳米晶具有晶体和溶液的双重性质,量子点是其中马上具有突破性工业应用的材料。  与其他纳米晶材料不同,量子点是以半导体晶体为基础的。尺寸在1~100纳米之间,每一个粒子都是单晶。量子点的名字,来源于半导体纳米晶的量子限域效应,或者量子尺寸效应。当半

理化所发光碳量子点研究取得系列进展

  碳元素是地球上所有已知生命的基础,在人类历史发展和现代科技进步中起到了举足轻重的作用。伴随C60、纳米碳管和石墨烯等纳米碳材料的发展,近两年碳量子点成为研究热点。与先前的蜂房结构纳米碳相比,碳量子点具有优越的发光性能;与半导体量子点相比,碳量子点发光更稳定、易于功能化和工业化、无毒、制备简单廉价

走进中科院量子信息重点实验室

  十一年前,中科院量子信息重点实验室主任郭光灿还只是名普通教授。当他带着几个研究生跑去申请国家自然科学基金委员会(下称基金委)设立的“创新研究群体科学基金”时,差点被“毙掉”。   “你们的方向很好,工作基础也很好,但是队伍太差。”基金委方面几番考量后才批准了他们的申请。   但近年

量子点:现状、机遇和挑战(一)

化学系教授彭笑刚“以新型量子点为基础,通过与浙大材料系金一政副教授小组和纳晶科技公司合作,我们已经看到了第一个带有颠覆性意义的量子点应用。那就是性能优异的‘量子点LED’(QLED)。”深重的自然资源危机我认为,量子点是现代科学的重要前沿。为什么这么说?2002年,《美国科学院院刊》有一篇文章,做了

科学家研制出新型量子晶体管

  记者日前从中科大获悉:该校郭国平教授研究组与日本科学家合作,首次在半导体柔性二维材料体系中实现了全电学调控的量子点器件。这种新型半导体量子晶体管为制备柔性量子芯片提供了新途径。最新一期国际权威学术期刊《科学·进展》发表了该成果。  经过几十年发展,半导体门控量子点作为一种量子晶体管,已成为制备量

关于局限半导体结构的研究

基于半导体材料的量子光学设计在量子密码学以及量子通讯应用及研究中发挥着越来越重要的作用。在本应用文档中,我们将介绍砷化镓的激子化激元以及砷化铟量子点的光谱学测量。所有的实验都是在4~60K的制冷温度下进行的。相对于光之间直接作用,电控制光学器件显得非常的简单。因此,在量子光学中,依然通过把光变为电信

量子级联激光器的原理及主要应用概述

量子级联激光器的工作原理与通常的半导体激光器截然不同,它打破了传统p-n结型半导体激光器的电子-空穴复合受激辐射机制,其发光波长由半导体能隙来决定。QCL受激辐射过程只有电子参与,其激射方案是利用在半导体异质结薄层内由量子限制效应引起的分离电子态之间产生粒子数反转,从而实现单电子注入的多光子输出,

太赫兹量子级联激光器和其它重要的半导体源

太赫兹(THz)[1.3]技术涉及电磁学、光电子学、半导体物理学、材料科学以及通信等多个学科。它在信息科学、生物学、医学、天文学、环境科学等领域有重要的应用价值。THz振荡源则是THz频段应用的关键器件。研制可以产生连续波发射的固态半导体振荡源是THz技术研究中最前沿的问题之一。基于半导体的THz辐