Antpedia LOGO WIKI资讯

科学家发表类器官和器官芯片相关研究进展报告

近日,中国科学院大连化学物理研究所研究员秦建华及其团队在《先进材料》(Advanced Materials)上发表题为《水凝胶介导的类器官和器官芯片研究》(Advances in Hydrogels in Organoids and Organs-on-a-Chip)的进展报告。 类器官和器官芯片是生命科学领域的新兴前沿科学技术,用以在体外依据细胞自组装和工程学设计等不同原理形成3D器官模型系统,可部分克服传统动物模型的局限不足,被认为是近年来的突破性技术,在组织器官发育、疾病研究、新药研发和再生医学等领域具有重要应用前景。但是,目前类器官和器官芯片在解决细胞培养基质成分复杂性、低可控性、芯片材料吸附性等方面仍面临一些挑战。 近年来,随着材料领域的快速发展,以水凝胶为代表的生物功能材料为建立高稳定性和高可信度的体外3D器官模型提供了新的契机。水凝胶是一种含水量较高的高分子材料,成分相对明确,大多具有可调的物理化学性质和良......阅读全文

多器官微流控芯片技术及其应用

  微流控芯片技术(Microfluidics)也被称为芯片实验室(Lab-On-a-Chip, LOC),涉及物理、化学、医学、流体、电子、材料、机械等多学科交叉的研究领域。通过微通道、反应室和其他某些功能部件,对流体进行精准操控,对生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单

让器官“种”在芯片上

   “未来,人体器官芯片或许能够取代我们的动物实验,成为一种颇具前景的研究手段。”中科院广州生物医药与健康研究院院长裴端卿对人体器官芯片这一全新领域掩饰不住自己的热情,他告诉《中国科学报》记者表示,随着日前中科院大连化物所微流控芯片研究组利用器官芯片技术,成功构建出动态三维高通量血脑屏障模型,人体

基于微流控技术的机体/器官芯片在药物开发中的应用

  器官芯片,作为一种基于微加工技术的的微流体器件,近年来在体外器官模型得到了广泛的研究。由于它可能在物理和化学方面采用微流体装置技术模拟体外环境,因此维持可以通器官芯片来维持细胞功能和形态,并复制器官间的相互作用。  来自日本东海大学(Tokai University)和东京大学(The Univ

芯片也可再造“器官”

  芯片,可谓是高科技产品的“大脑”,如手机、电脑、数控装备等都离不开它的支撑。然而,芯片不仅用在这些高科技产品上,还可作为人体器官再造的一种载体。  人体器官芯片是近几年发展起来的一门前沿生物科技,也是生物技术中极具特色和活力的新兴领域,融合了物理、化学、生物学、医学、材料学、工程学和微机电等多个

基于微流控技术的机体/器官芯片在药物开发中的应用

器官芯片,是一种基于微加工技术的的微流体器件。近年来其在体外器官模型领域受到了广泛的研究。由于它可能采用微流体技术在物理和化学方面模拟体外环境,因此可以通过器官芯片来维持细胞功能和形态,并模拟器官间的相互作用。虽然动物实验对于药物发现过程中的临床前筛选是必不可少的,但诸如伦理考虑和物种差异等各种问题

大连化物所发表类器官和器官芯片相关研究进展报告

  近日,中国科学院大连化学物理研究所研究员秦建华及其团队在《先进材料》(Advanced Materials)上发表题为《水凝胶介导的类器官和器官芯片研究》(Advances in Hydrogels in Organoids and Organs-on-a-Chip)的进展报告。  类器官和器官

大连化物所发表类器官和器官芯片相关研究进展

  近日,中国科学院大连化学物理研究所研究员秦建华及其团队在《先进材料》(Advanced Materials)上发表题为《水凝胶介导的类器官和器官芯片研究》(Advances in Hydrogels in Organoids and Organs-on-a-Chip)的进展报告。  类器官和器官

微流控芯片:注定要被深度产业化的科学技术

一)微流控芯片简介:1.1 微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS)技术的发展,电子计算机已由当年的“庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。与之发展类似,今天我们介绍的微流控芯片,又称芯片实验室(Lab-on

FDA 新合作,“器官芯片”或成毒理测试平台

  生物技术公司 Emulate 宣布,已经与美国 FDA 下属的食品和兽医办公室(Office of Foods and Veterinary Medicine)签订了一项“合作研究和开发协议(Cooperative Research and Development Agreement ,CRAD

新型生物传感器将实时监测器官芯片的含氧量

据麦姆斯咨询报道,一款新型生物传感器允许研究人员实时跟踪“器官芯片”系统中的含氧量,从而可以确保这些系统更真实地模仿器官功能。如果希望实现器官芯片在药物和毒性测试等应用,这一点至关重要。该款生物传感器由北卡罗来纳州立大学和北卡罗来纳大学教堂山分校的研究人员开发。十多年来,器官芯片的概念一直受

展示创新力量 改变人类生活——2016年十大新兴技术

  芯片器官  微生物  钙钛矿太阳能电池  区块链  二维材料  芯片器官带来生物学新视野  很多重要的生物学研究和实用药物测试只能通过研究某个器官在工作时的“一举一动”才能进行,一项新技术能在微芯片上培育功能性的人类器官模块,这种“芯片器官”或许可满足这一需要,使科学家能以前所未有的方式研究生理

2017微流控微尺度分析大会报告二 新技术讨论仍在继续

  分析测试百科网讯 2017年9月23日,第六届国际微流控学学术论坛(沈阳)、第十一届全国微全分析系统学术会议、第六届全国微纳尺度生物分离分析学术会议在东北大学开幕(相关报道:2017微流控微尺度分析会议在沈阳开幕 14家企业支持)。在第一天,中国科学院长春应用化学研究所院士汪尔康、中国科学院大连

Science Advances | 器官芯片革新胰腺癌研究

   目前,胰腺癌患者确诊后五年生存率还不到9%,因此胰腺癌也被称为“癌中之王”。胰腺癌难治一个原因是在胰腺癌早期,癌细胞便能够从其原发部位逃逸并转移到身体其它部位。然而,令人疑惑的,胰腺肿瘤组织缺乏血管,而癌细胞往往需要通过侵袭血管来进行扩散。  近日,来自哈佛大学、波士顿大学和宾夕法尼亚大学的一

类器官(organoids):器官芯片技术培育人胰岛类器官

  近日,中国科学院大连化学物理研究所研究员秦建华团队利用器官芯片技术培育人多能干细胞衍生的胰岛类器官取得新进展,相关成果发表在器官芯片领域刊物Lab on a chip上,并被选为封面文章。  类器官(organoids)是一种通过干细胞自组织方式形成的多细胞三维复杂结构,它能够在体外模拟具有来源

药物体外测试新进展:实时3D细胞培养和芯片器官

  仍面临挑战的体外培养新技术有望替代现有的、用于药物测试的模型动物,具有纪念意义的是,日前政府拥有的360只黑猩猩正式从药物测试中退役,研究人员相信体外新技术将来可应用于药物测试和生理生化研究。   更灵敏的体外技术新平台被开发出并应用于研究人体药物代谢,从而让动物从药物试验中解放出来。动物保护

林炳承:精准把握前沿研究方向的战略型科学家

  苟利国家生死以,岂因祸福避趋之。”人总是要留一点东西给社会的,对于从事科学研究的科学家来说更是如此。在他们看来,勇于担当,富有为国家和社会需求服务的社会责任感,是一种基本素质。  上世纪70~80年代,由于石油工业的推动,我国对色谱学科的需求空前旺盛,色谱因而获得了大规模的发展。有这样一位中国科

多器官微流控芯片的设计及新应用

多器官微流控芯片设计多器官微流控芯片的设计基于PBPK的理念,可利用模型预测人体对药物的反应以及药物的作用机制。最常制造的装置是尺寸在10~200mm之间的微流体通道,隔室的大小根据其功能正确地设计比例,不同的器官功能根据其机制的不同而具有不同的尺度。微流体系统材料通常采用聚二甲基硅氧烷,优化后多用

对微流控芯片技术的展望

微流控技术由微加工技术与三维培养相结合产生,在体外细胞培养中潜力较高。多器官微流控芯片技术可在微尺度对流体精准控制,模拟人体生理环境,克服了传统二维细胞培养模式与动物实验的不足,具有高度仿生性。MOC系统的发展结合了工程技术的优点,可调整流体流动和微通道中可控的局部组织-流体比率。MOC技术旨在建立

多器官微流控芯片的设计原理

多器官微流控芯片将不同器官和组织的细胞在芯片上培养,以微通道相连,实现多器官集成化,以考察其相互作用或建立一个系统,用于体外药物筛选。芯片中可集成数个经过特殊设计的微培养室、灌注通道并同时培养多种细胞,利用微流控技术可以产生精确可控的流体剪切力、周期性变化的机械力和溶质浓度梯度变化的灌注液。利用这些

3D打印生物组织的五大应用方向

  3D打印活体组织,有望给医疗和药物研发带来巨大的变化。图片1.png【图注】 打印生物细胞。图片来源: Ozbolat Lab at Penn State  3D打印已经让生产定制假肢变得更容易了。而生物工程师希望,在未来能够制造出真正的细胞材料。这种技术可能成为个性化的生物医学设备的基础,比如

美国威斯生物肝芯片可用于鉴定药物的物种特异性肝毒性

  在美国威斯生物启发工程研究所开发的众多微工程器官芯片(Organ Chip)模型中,肝芯片引起了许多行业的特别关注,这是因为对复杂生化相互作用的实时分析可以大大增强在药物、食品和其他消费产品的开发中普遍存在的肝毒性测试。  作为一家衍生自威斯生物启发工程研究所的致力于将器官芯片技术商业化的公司,

科学家研制“芯片上的器官”测试药物疗效

  据国外媒体报道,人们可以不再对小白鼠进行实验了,目前,科学家采用一种硅芯片进行医学测试,这将提供一个更好的方法理解药物的治疗效果。 美国科学家工程设计一种芯片能够模拟人体肺器官   科学家们正在研制“芯片上的器官”,在一个硅芯片上“缠绕”重要的细胞,例如肺细胞,之后模拟该器官的关键

器官芯片(organs-on-chips)有哪些新进展?

   器官芯片(organs-on-chips)是当今生物学研究中最热门的新工具之一。虽然它们听起来更像计算机组件,而不像人体部件,但科学家已经创建出各种器官的研究模型。《The Scientist》杂志近日介绍了这方面的进展。  科学家认为,这些工具最终将取代动物模型,从而推动药物开发和个性化医疗

大连化物所利用器官芯片技术构建糖尿病肾病模型

  近日,中国科学院大连化学物理研究所研究员秦建华领导的微流控芯片研究团队利用器官芯片技术成功构建了一种功能化肾芯片系统,并用于模拟糖尿病肾病早期病理变化,相关研究成果发表在Lab on a Chip (2017,17(10):1749-1760)杂志上。  糖尿病肾病是糖尿病的常见并发症之一,也是

第31届国际微尺度生物分离分析会议报告集锦(一)

  2015年4月26-29日,第31届国际微尺度生物分离分析会议(MSB)在上海滴水湖皇冠假日酒店隆重召开,本次大会由中国化学色谱专业委员会主办,华质泰科生物技术(北京)有限公司承办,会议为期3天。该会议旨在加强蛋白质组、代谢组、基因组、微流控芯片、色谱-质

Nature子刊:可体外复制造血微环境的骨髓芯片

  目前,哈佛大学Wyss生物工程研究所研究人员制备出一种最新器官芯片,可复制骨髓的结构、功能和细胞构成,骨髓是一种复杂的组织,至今仅在活体动物中有过完整的研究。相关研究结果发表在2014年5月4日的《Nature Methods》。该装置被称为“骨髓芯片” (bone marrow-on-

FDA开启人类肝脏芯片试验有望彻底消除动物模型毒理试验

  近日,美国FDA开始了一项试验,即检测利用特殊的肝脏芯片(livers-on-a-chip)是否能够可靠地模仿人类对食源性疾病,这种肝脏芯片是一种人类器官的微型化模型,能够模仿一定的生物功能;这项新型检测将会帮助有关机构确定,某些公司在申请批准某些被证明有毒的化合物(比如食品添加剂)时,是否能够

器官芯片再获投资!Emulate公司完成2875万美元B轮融

  器官芯片创业公司Emulate近日宣布,其基于科研用途开发的“人体仿真系统”在B轮融资中再获得2875万美元投资。该仿真系统主要通过建立器官芯片模型,利用一定算法和微流体装置,预测人体对药物、化学物质及疾病等因素的特定反应,最终实现对动物及人体在体研究特性的高效模拟。  目前Emulate公司器

Elveflow微流控器官培养套装的使用教程

微流控器官培养或类器官培养/模拟在当前的科学研究中处于风口浪尖上,尤其是多个类器官的模拟更是受到了很多研究人员的热捧。在这些类器官的模拟实验中,通常需要连续进行数天或数周的实验,在这种情形下,一个稳定、快捷、高效的微流控器官培养套装可以解决大部分实验中出现的问题。本文简要介绍用于微流控器官培养实验方

“干细胞及转化研究”等6个重点专项2018年项目申报发布

  5月22日,科技部官网发布了《关于对国家重点研发计划干细胞及转化研究等6个重点专项2018年度项目申报指南征求意见的通知》,其中,“干细胞及转化研究”重点专项、“蛋白质机器与生命过程调控”重点专项、“纳米科技”重点专项 与生物医学领域相关。  关于对国家重点研发计划干细胞及转化研究等6个重点专项