Antpedia LOGO WIKI资讯

m6A“RNA甲基化”研究汇总—病毒篇

RNA甲基化领域是当前最耀眼的国际科研明星,也是国自然申请的大热点;究其原因,是因为最近一两年,RNA甲基化的功能与分子机制方面取得了巨大的进展。RNA甲基化已被证实在癌症发生发展,病毒感染,神经发育,干细胞分化等过程中发挥着关键作用。今天,我们承接上一期的癌症篇,为您带来病毒领域的RNA甲基化研究进展。1.Nature Immunology:DDX46影响抗病毒RNA的去m6A甲基化,抑制细胞的抗病毒免疫应答影响因子:21.5,2017.8.28 中国医学科学院联合上海第二军医大学团队证实RNA解旋酶DDX46通过RNA去甲基化修饰,抑制水泡型口炎病毒(VSV)的天然免疫应答。那为什么作者会锁定DDX46来做研究呢?因为大多数DDX家族成员参与mRNA剪接,其中有三个成员(DDX1,DDX3和DDX41)作为胞质感受器还参与了抗病毒的天然免疫反应。于是,作者希望能够找到其它参与mRNA剪接且在核内影响宿主抗病毒反应的......阅读全文

RNA甲基化研究

近期华人科学家辛辛那提大学陈建军教授研究了METTL14和m6A RNA甲基化修饰在正常和恶性造血过程中的重要作用,表明SPI1-METTL14-MYB/MYC信号轴在髓系分化以及白血病发生过程中的作用。该研究于2018年1月发表在干细胞顶级期刊《Cell Steam Cell》(影响因子:

RNA甲基化测序

1、NSUN2影响m5C在HEK293细胞中整体分布情况NSUN2被报道是RNA甲基转移酶,能使tRNAs和mRNA发生m5C甲基化修饰。为了探究NSUN2对HEK293细胞mRNA m5C甲基化修饰的影响。作者利用CRISP/Cas9技术敲减NSUN2(NSUN2-/-HEK293细胞)后进行

同时检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平

  RNA甲基化作为云序生物的主打科研产品,已经帮助多个研究团队展开了RNA甲基化研究。作为国内RNA甲基化研究的领跑者,云序生物是国内RNA甲基化10分文章发表的成熟服务商,首发推出了非编码RNA甲基化测序研究,首发推出了超微量RNA甲基化测序技术,首发推出RNA甲基化研究一站式系统性解决方案,云

检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(上)

  云序生物解析如何做到快速同时检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(上)   RNA甲基化作为云序生物的主打科研产品,已经帮助多个研究团队展开了RNA甲基化研究。作为国内RNA甲基化研究的领跑者,云序生物是国内RNA甲基化10分文章发表的成熟服务商,首发推出了非编码RNA甲基化测

快速检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平

  占领C位!云序生物解析如何做到快速同时检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平   RNA甲基化作为云序生物的主打科研产品,已经帮助多个研究团队展开了RNA甲基化研究。作为国内RNA甲基化研究的领跑者,云序生物是国内RNA甲基化10分文章发表的成熟服务商,首发推出了非编码RNA

检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(下)

  又到了一周云序生物课堂开讲时间!你,准备好了吗?   上一期文章当中,云序通过引用这样一张表格给大家传递了一个重要信息:表中的METLL3、METTL14、NSun2、FTO、ALKBH5、YTHDF2均是RNA甲基化重要的酶,而且这些酶在不同疾病当中意义有所不同,例如METTL3在AML、B

同时检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(下)

  又到了一周云序生物课堂开讲时间!你,准备好了吗?   上一期文章当中,云序通过引用这样一张表格给大家传递了一个重要信息:表中的METLL3、METTL14、NSun2、FTO、ALKBH5、YTHDF2均是RNA甲基化重要的酶,而且这些酶在不同疾病当中意义有所不同,例如METTL3在AML、B

解析检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(上)

  云序生物解析如何做到快速同时检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(上)   RNA甲基化作为云序生物的主打科研产品,已经帮助多个研究团队展开了RNA甲基化研究。作为国内RNA甲基化研究的领跑者,云序生物是国内RNA甲基化10分文章发表的成熟服务商,首发推出了非编码RNA甲基化测

快速检测各类癌症当中RNA甲基化相关酶&RNA甲基化水平(下)

  又到了一周云序生物课堂开讲时间!你,准备好了吗?   上一期文章当中,云序通过引用这样一张表格给大家传递了一个重要信息:表中的METLL3、METTL14、NSun2、FTO、ALKBH5、YTHDF2均是RNA甲基化重要的酶,而且这些酶在不同疾病当中意义有所不同,例如METTL3在AML、B

RNA甲基化促进草莓成熟

  果实中富含的营养成分是人类膳食结构的重要组成部分,对人体健康不可或缺。果实品质在成熟过程中逐渐形成,受到精确调控。解析果实成熟调控机制,将为果实品质改良和新品种选育提供理论基础。根据成熟机制的不同,果实可分为两种类型:呼吸跃变型(如番茄、苹果、香蕉)和非呼吸跃变型(如草莓、葡萄、柑橘)。植物激素