Antpedia LOGO WIKI资讯

美科学家开发出单芯片基因合成新法

新的基因合成方法可使蛋白质表达最优化。 在合成生物学与生物技术中,定制基因序列的可靠性和成本效益对于相关应用是至关重要的。尽管脱氧核糖核酸(DNA)微阵列对于基因合成的短寡核苷酸池也是一个划算的来源,但是这些复杂混合物必须经过放大和正确的组装。一项最近的研究描述了一种方法,即将30个基因(或基因变异池)合成在一个单芯片上。美国科学家报告说,一轮的合成与选择能够成功鉴别出那些具有人们所渴望的属性的基因变异,例如最佳的表达水平。 在这项新的研究中,美国北卡罗来纳州杜克大学的Jiayuan Quan和同事进行了等温的基因巧合以及链置换扩增反应,以同时扩大和释放60-mer的寡核苷酸,随后他们利用聚合酶循环组装在0.5kb~1kb的基因中建立了重叠产物。为了方便,这些反应都在芯片上以及相同的反应混合物中进行;假性的寡核苷酸杂化通过将芯片细分为针对每个基因的单独的阱而得到最小化。其产物随后通过芯片外聚合酶链反应(......阅读全文

原位合成的基因芯片制备技术

生物芯片制备中材料的固定方式主要包括原位合成法和点样法两种,点样法又分为接触式点样法和非接触式点样法。原位合成法主要用于基因芯片的制备,点样法可用于基因芯片和蛋白质芯片的制备。细胞芯片主要是通过细胞本身的贴壁生长来完成固定。组织芯片通过一些黏性溶剂(如石蜡)使组织切片固定在载体上。某些微流体芯片不需

基因芯片合成后点样法的优缺点分析

主要优点是:保持探针长度均一,成本低用途广泛。缺点是:密度达不到原位合成法的水平,点之间重复性差。但经过改进,已可在6.5cm2 的范围内容纳100000个核酸位点已为从事基础研究的实验室广泛采用。

基因芯片

基因芯片(genechip)(又称DNA芯片、生物芯片)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的靶核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的

基因芯片 简介

随着人类基因组(测序)计划( Human genome project )的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而 , 怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共

基因芯片概念

基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,

基因芯片简介

随着人类基因组(测序)计划(Human genome project)的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组序列得以测定,基因序列数据正在以前所未有的速度迅速增长。然而,怎样去研究如此众多基因在生命过程中所担负的功能就成了全世界生命科学工作者共同的课题。为此,建立

基因芯片 原理

基因芯片(gene chip)的原型是80年代中期提出的。基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,可以基因芯片的测序原理用图11-5-1来说明。在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与

基因芯片相关技术

样品的准备及杂交检测目前,由于灵敏度所限,多数方法需要在标记和分析前对样品进行适当程序的扩增,不过也有不少人试图绕过这一问题,如 Mosaic Technologies 公司引入的固相 PCR 方法,引物特异性强,无交叉污染并且省去了液相处理的烦琐; Lynx Therapeutics 公司引入

基因芯片发展历史

俄罗斯科学院恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际专利。在这些技术储备的基础上,1994

基因芯片主要类型

目前已有多种方法可以将寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种,即原位合成( in situ synthesis )与合成点样两种。支持物有多种如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定基因芯