染色体基因定位实验

实验方法原理基因是由平均1000~3000核苷酸组成的序列,在光学显微镜下是难以识别的。为显示染色体上特定基因必须具备以下三个重要条件:1. 需要具有能与目的基因相特异接合(互补)的核苷酸序列即探针(Probe);2. 需要有能与探针相结合的标记物(常用同位素和荧光素);3. 制备出良好的染色体标本。在进行定位时,首先要使标记物与探针相接合(Lable:标记),形成探针/标记物复合物,然后再使复合物与染色体DNA 进行杂交(Hybridization)。所谓杂交,即两条来源不同的单链DNA能互补形成双链DNA的过程。在一般情况下,染色体上被定位的目的基因和探针都是双链状态的DNA,两者杂交只有在解链状态下,即都变成单链时才能发生。温度是使双链DNA解链的条件,在80 ℃温度下DNA即发生解链(变性)。因此当把染色体与探针置于同温条件下,两者便同时解链成为单链DNA;当温度下降时,两者DNA又重......阅读全文

染色体基因定位实验

实验方法原理基因是由平均1000~3000核苷酸组成的序列,在光学显微镜下是难以识别的。为显示染色体上特定基因必须具备以下三个重要条件:1.  需要具有能与目的基因相特异接合(互补)的核苷酸序列即探针(Probe);2.  需要有能与探针相结合的标记物(常用同位素和荧光素);3.  制备出良好的染色

染色体基因定位实验

实验方法原理 基因是由平均1000~3000核苷酸组成的序列,在光学显微镜下是难以识别的。为显示染色体上特定基因必须具备以下三个重要条件:1.  需要具有能与目的基因相特异接合(互补)的核苷酸序列即探针(Probe);2.  需要有能与探针相结合的标记物(常用同位素和荧光素);3.  制备出良好的染

植物酯酶同工酶基因的染色体定位

一、原理酶和蛋白质是基因表达的产物,基因位于染色体上。当某一对同源染色体缺失时,位于这对染色体上的基因和它们所编码的酶或蛋白质也就随之丢失。以正常小麦及其缺体系为材料,通过蛋白质聚丙烯酰胺凝胶电泳和同工酶分析,即可确定编码这些酶或蛋白质的基因在基因组中的定位(位于哪对染色体上)。酯酶是催化酯类化合物

荧光原位杂交用于基因染色体定位和基因图谱绘制

  目前应用的基因定位的主要方法是FISH。分离到的DNA序列直接通过FISH,同时采用多种颜色荧光素的标记探针,结合中期染色体和间期细胞方面的信息,可快速确定一-系列DNA序列之间的相互次序和距离,完成基因制图。用不同颜色炎光索标记2个不同的DNA链,而且他们在染色体上的距离大于1Mbp时,可以依

大肠杆菌杂交及基因定位实验

一、原理大肠杆菌染色体呈环状。高频重组菌株(Hfr)的染色体上整合有F因子,当Hfr细菌与F-细菌细胞发生接合(即杂交)时Hfr细胞(供体菌)的染色体从Hfr细胞向F-细胞内转移。由于染色体的转移具有一定的方向性,并且可以随时中断,因此根据结合后F-细菌(以重组子形式选出)中Hfr细菌染色体基因出现

基因定位概述

  基因组是生物的生殖细胞中所含全部基因的总和。人类基因组具有极其复杂的结构,其编码蛋白质的结构基因大约有100 000个,每个单倍体DNA含有3.2×109 bp,分布在24条常染色体和X,Y性染色体上。此外,还含有大量的非编码的重复DNA序列。基因定位(gene location)是

使用转录定位法进行基因定位

许多 RNA病毒的整个基因组往往作为一个单位转录。随着转录的进行,由基因组上各个基因所编码的蛋白质也依序在寄主细胞中出现。当寄主细胞被紫外线照射使本身的蛋白质合成受到抑制时,病毒蛋白的出现更为明显。紫外线照射也起着抑制病毒基因组的转录的作用。紫外线在 RNA分子的某一部位造成损伤后,损伤的部位和它后

用缺失定位法进行基因定位

缺失定位法一个细胞中的两个同源染色体中的一个上有一个突变基因,另一染色体上有一小段已知范围的缺失,如果这一突变基因的位置在缺失范围内,便不可能通过重组而得到野生型重组体;如果突变基因不在缺失范围内,那么就可以得到野生型重组体。利用一系列已知缺失位置和范围的缺失突变型,便能测定突变型基因的位置。

基因定位方法介绍单元化定位法

在构窠曲霉这一类真菌的准性生殖过程中,杂合二倍体细胞在有丝分裂时常随机地丢失它的染色体。染色体在多次有丝分裂过程中逐条丢失而使二倍体细胞终于转变为单倍体细胞的过程称为单元化。如果一对染色体中带有显性的野生型基因的染色体丢失了,那么同源染色体上隐性基因的性状便得以表现。此外,通过体细胞交换也可以从杂合

基因定位的应用

  基因定位和基因图对遗传学、医学和人类及生物进化的研究都有十分重要的意义。它可提供遗传病和其他疾病的诊断的遗传信息,可以指导对这些疾病的致病基因的克隆和对病症病因的分析与认识,这些又取决于遗传图和物理图的相互依赖关系。通过多态位点标记进行连锁分析获得物理图的位置有助于遗传作图,同时通过连锁分析(部

基因定位的概念

基因定位是指基因所属连锁群或染色体以及基因在染色体上的位置的测定。基因定位是遗传学研究中的重要环节,是遗传学研究中的一项基本工作。

基因定位的定义

基因定位是指基因所属连锁群或染色体以及基因在染色体上的位置的测定。基因定位是遗传学研究中的重要环节,是遗传学研究中的一项基本工作。

并发转导与基因定位——三点杂交实验

实验方法原理本实验用噬菌体P22对鼠伤寒沙门氏菌进行并发转导(共转导),供体细菌中的两个连锁基因可被导入受体细菌中,与受体细菌中的一个可选择表型的基因进行三点杂交分析,用以确定这三个基因的排列顺序。若有三个基因,其野生型分别用A、B、C表示,相应的突变型基因分别记为a、b、c。若A、B、C三个基因的

并发转导与基因定位——三点杂交实验

实验方法原理 本实验用噬菌体P22对鼠伤寒沙门氏菌进行并发转导(共转导),供体细菌中的两个连锁基因可被导入受体细菌中,与受体细菌中的一个可选择表型的基因进行三点杂交分析,用以确定这三个基因的排列顺序。若有三个基因,其野生型分别用A、B、C表示,相应的突变型基因分别记为a、b、c。若A、B、C三个基因

转录定位法进行基因定位的方法介绍

许多 RNA病毒的整个基因组往往作为一个单位转录。随着转录的进行,由基因组上各个基因所编码的蛋白质也依序在寄主细胞中出现。当寄主细胞被紫外线照射使本身的蛋白质合成受到抑制时,病毒蛋白的出现更为明显。紫外线照射也起着抑制病毒基因组的转录的作用。紫外线在 RNA分子的某一部位造成损伤后,损伤的部位和它后

缺失定位法进行基因定位的方法介绍

一个细胞中的两个同源染色体中的一个上有一个突变基因,另一染色体上有一小段已知范围的缺失,如果这一突变基因的位置在缺失范围内,便不可能通过重组而得到野生型重组体;如果突变基因不在缺失范围内,那么就可以得到野生型重组体。利用一系列已知缺失位置和范围的缺失突变型,便能测定突变型基因的位置。

比较基因定位的定义

中文名称比较基因定位英文名称comparative gene mapping定  义不同物种间的同源基因在染色体上定位的过程。应用学科遗传学(一级学科),基因组学(二级学科)

基因定位的功能特点

基因定位是指基因所属连锁群或染色体以及基因在染色体上的位置的测定。基因定位是遗传学研究中的重要环节,是遗传学研究中的一项基本工作。

基因的连锁交换和基因定位(表)

一、实验目的 观察玉米籽粒性状间的连锁遗传现象;理解连锁和交换的原理;掌握测定基因间交换值和基因定位的方法。 二、实验原理 位于同一染色体上的两非等位基因(如AB或ab),总是有联系在一起分配到同一配子中去的倾向。若两非等位基因完全连锁,杂合体(AB//ab)只产生2种亲本

Cell:基因定位的重大影响

  莱斯大学、加州大学和休斯顿大学的研究团队发现,两个关键基因的染色体定位,决定着枯草芽胞杆菌形成芽孢的时机。这项研究于七月九日发表在顶级期刊Cell杂志上。  枯草芽胞杆菌是一种单细胞微生物,它们一生唯一的目标就是繁殖。不过有时候,生存并不是一件容易的事。在食物匮乏的条件下,枯草芽胞杆菌面临着至关

基因定位方法介绍同线法

如果一个细胞得到或丢失一条染色体则将同时得到或失去这条染色体上的全部基因。如果其中某些基因是已知的,而另一连锁关系未知的基因恰恰和上述基因同时得到或失去,便可以判定后一基因和前一基因属于同一连锁群(表2)。这一原理曾广泛应用于人的基因定位。仙台病毒或聚乙二醇能促使人的体细胞和啮齿类动物的体细胞相融合

Cell:基因定位听命于谁?

   生物通报道 来自美国国立卫生研究院下属国家癌症研究所(NCI)的科学家们,利用新型的大规模成像技术绘制出了个别基因在人类细胞核中的空间位置,并确定了50个细胞因子是基因正确三维(3D)定位的必要条件。这些空间定位对基因表达、DNA修复、基因组稳定性和其他的细胞活动起重要的作用。这项研究发布在8

基因测定方法单元化定位法

在构窠曲霉这一类真菌的准性生殖过程中,杂合二倍体细胞在有丝分裂时常随机地丢失它的染色体。染色体在多次有丝分裂过程中逐条丢失而使二倍体细胞终于转变为单倍体细胞的过程称为单元化。如果一对染色体中带有显性的野生型基因的染色体丢失了,那么同源染色体上隐性基因的性状便得以表现。此外,通过体细胞交换也可以从杂合

基因定位方法介绍连锁群法

利用近着丝粒距离基因的定位法  如果某一染色体上有一个离着丝粒距离较近的已知基因,另外有一个基因同样离着丝粒很近,可是不知道它是否属于同一染色体。把这样两个突变型品系进行杂交,如果这两个基因属于同一染色体,它们之间的重组频率不应超过两者的着丝粒距离之和;如果它们不属于同一染色体,那么它们的重组频率应

用标记获救法进行基因定位

标记获救法这是一种结合物理图谱制作和遗传学分析的基因定位方法,它适用于病毒等基因组较小的生物。以大肠杆菌噬菌体ΦX174为例,把野生型噬菌体的双链复制型DNA分子用限制性内切酶HindⅡ切为13个片段,把每种片段和突变型 amg的DNA单链在使DNA分子变性并复性的条件下混合保温,然后用各个样品分别

基因转变的梯度定位法介绍

一个基因内部的各个点突变的基因转变常呈梯度现象,即在这基因的一端发生基因转变的频率最高,在另一端则最低,在两端之间存在着一个转变频率的梯度。对于任何一个未知位置的点突变,可以通过基因转变频率的测定进行精细结构定位。这一方法的应用限于一次减数分裂产物包被在一个囊里面的子囊菌,而且限于影响子囊孢子颜色和

缺失定位———基因精细结构分析

实验方法原理 如果某一待测缺失突变株能和一种已知缺失突变株进行重组,表明这一待测突变的位置一定不在已知缺失区域内。如果不能重组,待测定菌株突变位置便在已知缺失范围内。菌株A、B、C的缺失区域是已知的,另外有一系列点突变菌株1、2、3和4。分别将它们两两滴加在固体培养基表面的同一位置上,根据是否出现野

细菌接合与基因定位———中断杂交

实验方法原理在大肠杆菌细胞内,F因子与染色体DNA之间的交换可使F因子插入到宿主细胞的染色体DNA中。带有一个整合F因子的细胞称为高频重组(Hfr)细胞。不同的Hfr菌株中F因子的整合的位置不尽相同。在Hfr细菌和F-接合中,Hfr细胞染色体可以进入F-细胞,发生重组。Hfr细菌中染色体的转移从F因

用共缺失法进行基因定位

共缺失法缺失带来和基因突变相同的表型。由一次缺失所造成的突变只涉及相邻接的基因,因此可以从缺失所带来的基因突变的分析来测定一些基因的相对位置,这一方法被广泛应用于酵母菌的线粒体基因的定位(见染色体外遗传)。根据基因行为的定位  基因的某些行为可以反映它们的位置。在细菌接合过程中“雄性”细菌的染色体基

基因定位方法介绍假连锁法

相互易位杂合体只有在减数分裂过程中通过交互离开所形成的平衡配子才能够存活,并使非同源染色体上的基因显示假连锁现象(见染色体畸变)。所以把带有属于已知染色体的标记基因的相互易位品系作为测交品系和一个突变型品系杂交,如果发现这一突变基因经常和标记基因的野生型等位基因相连锁,就可以判定突变基因一定在相互易