光合作用基础知识:原初反应(图)

光合作用的实质是将光能转变成化学能。根据能量转变的性质,将光合作用分为三个阶段(表4-1):1.光能的吸收、传递和转换成电能,主要由原初反应完成;2.电能转变为活跃化学能,由电子传递和光合磷酸化完成;3.活跃的化学能转变为稳定的化学能,由碳同化完成。原初反应(primary reaction)是指从光合色素分子被光激发,到引起第一个光化学反应为止的过程,它包括光能的吸收、传递与光化学反应。原初反应与生化反应相比,其速度非常快,可在皮秒(ps,10-12s)与纳秒(ns,10-9s)内完成,且与温度无关,可在-196℃(77K,液氮温度)或-271℃(2K,液氦温度)下进行。由于速度快,散失的能量少,所以其量子效率接近1。一、光能的吸收与传递(一)激发态的形成通常色素分子是处于能量的最低状态—基态(ground state)。色素分子吸收了一个光子后,会引起原子结构内电子的重新排列。其中一个低能的电子获得能量后就可克服原子......阅读全文

光合作用基础知识:原初反应(图)

光合作用的实质是将光能转变成化学能。根据能量转变的性质,将光合作用分为三个阶段(表4-1):1.光能的吸收、传递和转换成电能,主要由原初反应完成;2.电能转变为活跃化学能,由电子传递和光合磷酸化完成;3.活跃的化学能转变为稳定的化学能,由碳同化完成。原初反应(primary reaction)是指从

光合作用原初反应过程

在共振传递过程中,供体和受体分子可以是同种,也可以是异种分子。分子既无光的发射也无光的吸收。通过上述色素分子间的能量传递,聚光色素吸收的光能会很快到达并激发反应中心色素分子,启动光化学反应。光合作用的能量吸收、传递与转换的关系。光合作用原初反应的能量吸收、传递与转换图解粗的波浪箭头是光能的吸收,细的

光合作用的原初反应介绍

  光合作用的第一幕是原初反应(primary reaction)。它是指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程,其中包含色素分子对光能的吸收、传递和转换的过程。两个光系统(PSⅠ和PSⅡ)均参加原初反应。 [6]  当波长范围为400 ~ 700 nm的可见光照射到绿色植物

什么是光合作用的原初反应?

光合作用的第一幕是原初反应(primary reaction)。它是指光合作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程,其中包含色素分子对光能的吸收、传递和转换的过程。两个光系统(PSⅠ和PSⅡ)均参加原初反应。当波长范围为400 ~ 700 nm的可见光照射到绿色植物时,聚光色素系统

原初反应的具体过程

在共振传递过程中,供体和受体分子可以是同种,也可以是异种分子。分子既无光的发射也无光的吸收。通过上述色素分子间的能量传递,聚光色素吸收的光能会很快到达并激发反应中心色素分子,启动光化学反应。光合作用的能量吸收、传递与转换的关系。光合作用原初反应的能量吸收、传递与转换图解粗的波浪箭头是光能的吸收,细的

原初反应的吸收与传递

激发态的形成通常色素分子是处于能量的最低状态—基态(ground state)。色素分子吸收了一个光子后,会引起原子结构内电子的重新排列。其中一个低能的电子获得能量后就可克服原子核正电荷对其的吸引力而被推进到高能的激发态(excited state)。下式表示叶绿素吸收光子转变成了激发态。激发态具有

原初反应转变的方式

①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三线态,以及从三线态回至基态时的放热。这些都是无辐射退激。另外吸收蓝光处于第二单线

原初反应的概念和特点

原初反应(primary reaction)是指从光合色素分子被光能激发而引起第一个光化学反应的过程,它包括光能的吸收、传递和转换。原初反应与生化反应相比,其速度非常快,可在皮秒(ps,10^-12s)与纳秒(ns,10^-9s)内完成,且与温度无关,可在-196℃(77K,液氮温度)或-271℃(

原初反应的吸收与传递

激发态的形成通常色素分子是处于能量的最低状态—基态(ground state)。色素分子吸收了一个光子后,会引起原子结构内电子的重新排列。其中一个低能的电子获得能量后就可克服原子核正电荷对其的吸引力而被推进到高能的激发态(excited state)。下式表示叶绿素吸收光子转变成了激发态。激发态具有

原初反应的具体过程介绍

PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的原初电子受体是去镁叶绿素分子(Pheo),它们的次级电子受体分别是铁硫中心和醌分子。PSⅠ的原初反应为: P700·A0 →P700·A0 →P700+·A0- (4-17)PSⅡ的原初反应为: P680·Pheo→P680·Pheo→P680+·P

细胞生理学词汇原初反应

原初反应(primary reaction)是指从光合色素分子被光能激发而引起第一个光化学反应的过程,它包括光能的吸收、传递和转换。原初反应与生化反应相比,其速度非常快,可在皮秒(ps,10^-12s)与纳秒(ns,10^-9s)内完成,且与温度无关,可在-196℃(77K,液氮温度)或-271℃(

原初反应的光化学反应中心介绍

原初反应的光化学反应是在光系统的反应中心(reaction center)进行的。反应中心是发生原初反应的最小单位,它是由反应中心色素分子、原初电子受体、次级电子受体与供体等电子传递体,以及维持这些电子传递体的微环境所必需的蛋白质等成分组成的。反应中心中的原初电子受体(primary electro

原初反应吸收与传递激发态

激发态是不稳定的状态,经过一定时间后,就会发生能量的转变,转变的方式有以下几种:①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三

光合作用反应过程

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳

光合作用的反应过程

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳

光合作用的反应过程

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳

什么是光合作用中心?

光合作用中心,也称反应中心, [6]  是进行原初反应的最基本的色素蛋白结构。其至少包括一个光能转换色素分子(P)、一个原初电子受体(A)和一个原初电子供体(D),才能导致电荷分离,将光能转换为电能,并且累积起来。光合作用中心可以认为是光能转换的基本单位。

光合作用光反应和暗反应的区别

两反应区别反应阶段光反应碳反应(暗反应)反应实质光能→化学能,释放同化CO2形成(CH2O)(酶促反应)反应时间短促,以微秒计较缓慢反应条件需色素、光、ADP、和酶不需色素和光,需多种酶反应场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化(光反应)2H2O→4[H]+O2↑(在光和叶绿体中

概述光合作用的反应过程

  光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:  ①原初反应,包括光能的吸收、传递和转换;  ②电子传递和光合磷酸化,形成活跃化学能(ATP和NAD

光合作用的反应阶段介绍

光反应阶段图3光合作用过程图解光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。反应式:暗反应阶段暗反应阶段是利用光反

光合作用的反应过程介绍

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳

光反应的过程步骤

光反应又称为光系统电子传递反应(photosythenic electron-transfer reaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变成电能。然后电子通过在叶绿体类囊体膜中的电子传递链间的移动传递,并将H+质子从叶绿体基质传递到类囊体腔,建立电

光合作用光反应的特征和反应式

光反应阶段光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。 反应式:

光合作用暗反应的特征和反应式

暗反应阶段暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。 反应式:总反应式:;其中,表示糖类。

光合作用光反应和暗反应的区别

两反应区别反应阶段第一阶段第二阶段反应实质光能→化学能,释放同化CO2形成(CH2O)(酶促反应)反应时间短促,以微秒计较缓慢反应条件需色素、光、ADP、和酶不需色素和光,需多种酶反应场所在叶绿体内囊状结构薄膜上进行在叶绿体基质中进行物质转化(光反应)2H2O→4[H]+O2↑(在光和叶绿体中的色素

关于光合作用的光合色素及光系统

  1. 光合色素  叶绿体由双层膜、类囊体和基质三部分组成。类囊体是单层膜同成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,光能向化学能的转化是在类囊体上进行的。类囊体膜上的色素有两类:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3 : 1,而叶绿素a(ch

光合作用的作用及反应步骤

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

光合作用的总反应式

光合作用的总反应式为:6CO2 + 6H2O ——→ C6H12O6 + 6O2ΔG0’=2881千焦耳/摩尔形成一分子氧需4个电子,8个光子。所以6个氧分子共需6×8=48个光量子。每摩尔光量子含有6.02×10^23光量子,不同波长下光量子具有的能量不同。短波长光能量较大。若按700nm波长光计

PEA植物效率分析仪数据处理方法教程

前言及原理:Kautsky和Hirsh(1931)最先认识到光合原初反应和叶绿素荧光存在着密切关系。他们第一次报告了经过暗适应的植物绿色材料照光后,叶绿素荧光先迅速上升到一个最大值,然后逐渐下降,最后达到一个稳定值。此后,随着研究的深入,人们逐步认识到荧光诱导动力学曲线中蕴藏着丰富的信息。图1 用脉

调制叶绿素荧光仪能够测定叶绿素吗

叶绿素荧光作为光合作用研究的探针,得到了广泛的研究和应用。叶绿素荧光不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成和CO2固定等过程有关。几乎所有光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因