Antpedia LOGO WIKI资讯

银河系中心黑洞爆发最明亮耀斑

一个由美国麻省理工大学(MIT)、密歇根大学、荷兰阿姆斯特丹大学等单位科学家组成的国际天文小组,利用美国国家航空航天局(NASA)的钱德拉X射线太空望远镜探测到从位于银河系中心的人马座A*爆发出的迄今最明亮的X射线耀斑,光源距地球约26000光年,亮度是黑洞正常发光的150倍。据研究人员观察,耀斑爆发时间超过1小时,然后逐渐变暗。这次短暂的爆发也是研究类似的成熟黑洞的线索。研究结果发表在最近的《天体物理学杂志》上。 该天文小组报告说,在今年2月9日的一次观察中,他们探测到了最大的耀斑爆发,发出了“很少”的能量。“很少”只是相对于人马座A*自身约为太阳40亿倍的质量而言的。耀斑爆发原因目前尚不清楚。 当黑洞吞噬它附近的物质时,会以光的形式发出能量,通过探测这种光能探测到黑洞的存在。新生星系和类星体的中心通常极为明亮,正是其中心黑洞在吞噬周围物质,发出了大量能量。随着黑洞变老,吞噬速度会慢下来,“吃”得更少而变得更昏......阅读全文

太阳耀斑硬X射线能谱演变特征

太阳硬X射线是耀斑高能电子束流与太阳大气相互作用产生的韧致辐射,根据简单的太阳耀斑环物理模型,假定具有流量与能谱同步变化的高能电子束流从耀斑环顶部注入,计算了硬X射线辐射在不同的靶物质密度区的能谱演变特征.结果表明:硬X射线辐射在低大气密度靶区呈现软一硬一硬的能谱演变特征,在高密度靶区硬X射线能谱则

物质落入黑洞前产生高能射线耀斑

  我们的银河系中心潜伏着一个超大质量黑洞,一些围绕它旋转的热气体可能会落入其中。据物理学家组织网近日报道,最近,欧洲空间局(ESA)赫歇尔空间天文台对这些热分子气体进行了详细观察,发现它们能有这么高温度,可能是黑洞正在给自己“烹煮”美餐。   该黑洞位于银河系中心一个无线电光源人马座A*(

实验室中成功模拟太阳耀斑中环顶X射线源和重联喷流

  中国科学院物理研究所和国家天文台实验室研究团队继去年在强激光实验室模拟黑洞辐射产生的光电离光谱取得重要成果之后[Nature Physics 5, 821 (2009)],今年又在实验室中成功模拟了太阳耀斑著名观测现象——环顶X射线源和重联喷流。值得一提的是,这项重要突破完全基于

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

X射线治疗

  X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。

X射线光谱

1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到

X射线原理

X射线定义X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁波。其波长很短约介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片

X 射线激光

X 射线激光指的是 XFEL (x-ray free-electron laser),X 射线自由电子激光。而这种激光,是将自由电子激光技术(FEL)产生的激光,拓展到 X 射线范围内而产生的一种 X 射线激光。这种激光的强度可达传统方法产生的激光亮度的十亿倍,因此可让较小晶体产生出足够强的衍射图样

X射线诊断

  X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大