Antpedia LOGO WIKI资讯

原位杂交组织化学概述

一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。固相杂交有菌落原位杂交(colony in situ hybridization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( Northern b......阅读全文

原位杂交组织化学技术的基本方法

一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质粒和噬菌体DNA的构建成功,核酸自动

原位杂交组织化学实验技术1

第一节 原位杂交组织化学概述  一、核酸分子杂交技术  1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆、质

原位杂交组织化学实验技术2

 DNA合成仪的诞生使制造寡核苷酸探针成为可能,与上述探针不同的是寡核苷酸探针不是克隆性DNA探针,它是由DNA合成仪依照所需杂交的靶核苷酸序列合成的。具有制造方便,价格低廉的优点,也可进行放射性与非放射性标记,但其特异性不如克隆性探针强,亦不如其杂交信号高。  原位杂交组织化学技术在近20年的发展

cRNA探针在原位杂交组织化学

Angerer及其同事们首先应用RNA探针于原位杂交(见Cox et al 1984),核酸探针为单链的RNA分子,产生自具有质粒逆转录系统的cDNA克隆(图20-2)。由于它是单链的,不像双链的DNA探针,在溶液中不会再退火(reanneal),因此,较大百分比的探针可参与杂交反应,较cDNA探针

原位杂交组织化学实验技术4

 二、生物素标记cRNA探针在原位杂交组织化学中的应用  (一)光敏生物素标记cRNA探针的应用  以线性质粒DNA为模板合成未加标记物的cRNA探针,使其最终浓度为0.5~1.0μg/μl(500~1000ng/μl),再与等体积的光敏生物素(1μg/μl)混合。在150瓦卤素灯下,距离光源20c

原位杂交组织化学技术的基本方法(二)

如前所述,杂交前的准备只是为杂交的成功奠定基础,要获得满意的实验结果,在杂交这一实验过程中还须注意以下的环节。1.探针的浓度  很难事先确定每一种实验探针的浓度,但要掌握一个原则,即探针浓度必须给予该实验zui大的信/噪比值。背景染色的高低也与探针浓度有关。根据国内外实验工作者的经验,认为zui佳原

DNA及寡核苷酸探针在原位杂交组织化学

一、DNA探针的应用  虽然一般认为DNA探针敏感度不如cRNA探针,但在病毒的检测等领域中DNA探针仍得到广泛的应用。  在原位杂交细胞化学的操作步骤方面与cRNA探针基本相同,所不同的是:(1)杂交时需先在高温80~95℃短时处理,使DNA探针及细胞内靶DNA变性,解离成单链,迅置于冰上冷却。然

POCT的临床应用与存在的问题

 随着经济的发展、社会的进步和人口整体素质的提高,新的技术、新的理念和新的思维引入医学检验领域,使医学检验技术呈现两大发展趋势。一方面是在疾病诊断治疗及维护人体健康过程中(特别是健康信息档案的建立)需要掌握的个人健康信息量越来越大,使临床检验向高分析速度,高自动化程度,高智能化水平,高信息

化学发光免疫分析仪器与试剂

一、概述发光检测作为分析化学领域内一个强有力的技术手段,始终以其高灵敏度、低成本、简单快速的优势发挥着重要作用,对于某些特定化合物(如有机磷农药和神经毒剂)、某些酶活性、金属离子等的动态分析和现场检测具有不可替代的优势。从上世纪中叶开始,生物医学界一直在致力于将该技术体系应用于实验室研究中,并取得了

电子显微镜免疫细胞化学技术概述

第七章 电子显微镜免疫细胞化学技术第一节 电子显微镜免疫细胞化学技术概述免疫细胞化学技术为在细胞水平上研究免疫反应做出了贡献,但由于光学分辨率的限制,不可能从细胞超微结构水平观察和研究免疫反应。因此,Singer于1959年首先提出用电子密度较高的物质铁蛋白(ferritin)标记抗体的方法,为在细