Antpedia LOGO WIKI资讯

毫米波收发器系统硬件介绍(一)

概览无线技术已无所不在。 现在能连接无线的新型无线设备越来越多,其消耗的数据量与日俱增。 无线设备的数量与数据消耗量每年都以指数级增加。 为了满足此类需求,许多机构都在研究新型无线技术,以完善现有的无线架构。 为了达成这个目标,世界各地的无线标准化组织共同展开了一项艰巨的任务,那就是定义新一代无线网络系统,也称为5G。 5G网络的三大应用情境包含: 增强型移动宽带(eMBB)、大规模机器通信(mMTC)与超可靠机器通信(uRMTC)。 NI模块产品联系伽太科技,sales@gamtic.com,021-5197 0121上述三大应用情境可分别用于满足不同的需求,例如eMBB的重点在于峰值数据传输率,而uRMTC则侧重于降低延迟。 由于需求十分多样,单一特定技术无法满足全部需求,因此5G将会是多种全新技术的合体。 尤其是对于eMBB应用场景,研究人员需要将峰值数据传输速率提高到4G网络的100倍以......阅读全文

毫米波收发器系统硬件介绍(三)

毫米波电站NI 3647与NI 3657模块化发射与接收无线电站能为NI毫米波收发器系统提供高品质的RF信号。 NI 3647毫米波电站发射器的工作频率范围为 71 - 76 GHz;输出功率高达 25 dBm * 与宽带高达2 GHz RF。 此发射器可与71 - 76 GHz 的 NI

毫米波收发器系统硬件介绍(二)

PXI Express机箱原型验证系统以PXIe-1085机箱为基础。 机箱包含不同的处理模块,并提供电源、互连功能以及定时和同步基础设施。 这款18槽机箱的每个插槽均搭载了PCI Express(PCIe)第3代技术,适用于高吞吐量和低延迟应用。 机箱可提供4 GB/s的单槽带宽和24 G

使用毫米波雷达套件快速开发精密目标检测设计(一)

设计人员承受着不断的竞争压力,需要实现更小,更精确,检测范围更长的运动传感器,以应用于智能建筑,工厂自动化,运输和无人机等各种行业。毫米波(mmWave)技术正在成为一种有吸引力的运动检测选项,而mmWave技术的新设计师则发现潜在的雷达前端和高性能信号链具有挑战性。 为了解决这些问题,mmWave

华为5G芯片率先完成SA/NSA全部测试的背后面临哪些挑战-2

配置宽带测试台,以覆盖广泛的频率范围增强型移动宽带(eMBB,Enhance Mobile Broadband)是ITU-R确定的5G三大主要应用场景之一。5G增强型移动宽带:具备更大的吞吐量、低延时以及更一致的体验。5G增强型移动宽带主要体现在以下领域:3D超高清视频远程呈现、可感知的互联

太赫兹雷达技术(一)

摘要:太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,

太赫兹雷达技术(三)

3.2 目标散射特性建模与计算目标散射特性建模与计算是获取目标散射特性的有效方法。太赫兹频段实际目标一般应视为粗糙表面目标,表面细微结构散射较强不可忽略,且是超电大尺寸目标,这是太赫兹频段目标散射特性建模与计算的瓶颈问题。研究太赫兹频段目标特性可采用两种技术途径:一种是由微波/毫米波向上扩展,另一种

太赫兹雷达技术(二)

2.1.2 真空电子学太赫兹雷达太赫兹电真空器件以其高功率输出优势在太赫兹雷达系统发展中具有重要意义。最早关于真空电子学太赫兹雷达的报道是1988年马萨诸塞大学的McIntosh R E等人基于当时真空器件扩展互作用振荡器(Extended Interaction Oscillator, EIO