Antpedia LOGO WIKI资讯

生物显微镜干涉相衬显微镜结构

生物显微镜-干涉相衬显微镜结构诺马斯基(Nomarski)微分干涉相衬显微术(简称干涉相衬)是20世纪50年代中期在光学显微术内出现的一个新分支,即偏振光的双光束干涉。与其他双光束干涉显微术相比,主要区别是:这种显微术参加干涉的两文光束均通过物体,然后借某些方法再合成一束以产生干涉,而不是一支通过物体的光束和另一支不通过物体的所谓参考光束之间的干涉。干涉相衬能将物体的光学厚度梯度如实地反映出来,形成其他显微术所没有的三维立体浮雕图像。由于微分干涉相衬显微术对标本的适应性较广,无论标本厚与薄,折射率相差是否大,染色与否,是否活体,等等,均能观察,因此在组织胚胎、血液、神经、微生物、生物、流体生物学及许多无机物的观察上得到广泛的应用。干涉相衬显微镜在结构上除物镜和聚光器外,其他结构与一般生物显微镜相同。聚光器类似于位相显微镜的转盘形式,但内部安装了各种倍率用的诺马斯基棱镜。使用不同物镜时,可以转动转盘以选择相应的棱镜。为了扩大使用范......阅读全文

光学显微镜分析

  光学显微镜(英文Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  介绍  显微镜是一种精密的光学仪器,已有300多年的发展史。自从有了显微镜,人们看到了过去看不到的许多微小生物和构成生物的基本单元——细胞。

生物显微镜-干涉相衬显微镜结构

生物显微镜-干涉相衬显微镜结构诺马斯基(Nomarski)微分干涉相衬显微术(简称干涉相衬)是20世纪50年代中期在光学显微术内出现的一个新分支,即偏振光的双光束干涉。与其他双光束干涉显微术相比,主要区别是:这种显微术参加干涉的两文光束均通过物体,然后借某些方法再合成一束以产生干涉,而不是一支通过物

各种光学显微镜的分类与用途介绍

光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)

各种光学显微镜的分类与用途介绍

     光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜

三维全息显微镜快速鉴别细胞技术

全息成像原理是相干光源通过半透明镜头时,光束的振幅和相位在光和物质相互作用时受到调制,这种调制信号使得输出波前带有物体全部三维结构信息。 使用数字全息显微镜(DHM),我们可以间接记录物体波前的相位和振幅信息。通过单个全息样本,数字重构生物样品不同深度层次的图像。因此,DHM一般被归类为三维光

光学显微镜成像光路系统的调整

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}显微镜成像光路系统的调整,是根据不同显微镜检术的需要而进行的。所谓显微镜检术(microscopy),概括而言就是以显微

成像光路系统的调整及显微镜检术概要

成像光路系统的调整及显微镜检术概要显微镜成像光路系统的调整,是根据不同显微镜检术的需要而进行的。所谓显微镜检术(microscopy),概括而言就是以显微镜观察样品时所使用的照明方法,以及如何使样品所成的像能获得更良好反差的技术与方法。以下简述显微镜检术中已成熟的几种方法及对应的显微镜成像光路系统的

显微镜的七种观察方式

  一.明视野观察(Bright field BF)   明视野镜检是大家比较熟悉的一种镜检方式,广泛应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。   明视野   二.暗视野观察(Dark field DF)   暗视野实际是暗场照明发。

常用实验室仪器的原理

  1.紫外分光光谱UV    分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸

常用实验室仪器的原理

  1.紫外分光光谱UV    分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸

如何选购显微镜?

一、显微镜的分类和应用 显微镜是实验室通用的分析仪器,根据观察应用的不同,主要可分为生物显微镜、体视显微镜和工业显微镜。 1.生物显微镜——用来观察生物切片、生物细胞、细菌以及活体组织培养。另外,生物显微镜包含数码生物显微镜、荧光显微镜、偏光显微镜等。 2.体视显微镜——适宜于物体

1068万!广州中医药大学采购这些仪器

  分析测试百科网讯 近日,广州中医药大学科技创新中心、中药学院公布采购项目,项目预算1068万,涉及超高效液相色谱仪(UPLC)、400MHz核磁共振波谱仪、超高效液相色谱四极杆飞行时间质谱联用仪、气相色谱质谱联用仪等7台仪器。详情如下:序号采购项目名称采购需求概况预算金额(万元)预计采购时间(填

推动材料学与生命科学发展 记2019北京市电子显微学年会

  分析测试百科网讯 2019年12月17日,2019年度北京市电子显微学年会隆重举行。本次会议旨在推动北京及周边省市广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学、生命科学等领域的应用、发展和交流。会议共有200余人出席、参与。分析测试百科网作为支持媒体为您带来全程跟踪报道。年会签

光学显微镜的发展过程

早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理

光学显微镜的分类和用途

光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)

光学显微镜使用的光源种类和各自有哪些特点

【电子显微镜】电子显微镜按结构和用途可分为透射式电子显微镜、扫描式电子显微镜、反射式电子显微镜和发射式电子显微镜等。透射式电子显微镜常用于观察那些用普通显微镜所不能分辨的细微物质结构;扫描式电子显微镜主要用于观察固体表面的形貌,也能与X射线衍射仪或电子能谱仪相结合,构成电子微探针,用于物质成分分析;

普通光学显微镜和双目体视显微镜的有什么不同

  光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  光学显微镜有多种分类方法:按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物

多位专家指导:如何进行多种成像实验

  超高分辨率显微镜赋予了人们突破衍射极限的能力,研究者们在这一技术的帮助下已经获得了许多固定样本的漂亮图像。不过,用超高分辨率显微镜进行活细胞成像,将是一个更大的挑战。  样品制备的重要性  样品质量对于超高分辨率显微镜而言特别重要,这一点与传统显微成像是一致的。在初次涉足超高分辨率成像时,之前的

电子显微镜使用实验_透射电子显微镜的样品制备

实验方法原理一、电子显微镜的分辨力和放大率 电子显微镜是利用电子流代替光学显微镜的光束使物体放大成像而由此得名的。发射电子流的电子源部分称为电子枪,电子枪由发射电子的“V”形钨丝及阳极板组成,在高真空中,钨丝被加热到白炽程度,其尖端便发射出电子,发射出来的电子受到阳极很高的正电压的吸引,使

光学显微镜的分类方法

光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜有多种分类方法,按接收器类型可分为目视、摄影和电视显微镜等,按观察对像可分为生物和金相显微镜等……使用光学显微镜需要遵循一定的规程,例如显微镜的摆放位置、使用方法、调节方法等。下面就来一起了解

光学显微镜的分类

光学显微镜的分类光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目

透射电子显微镜的原理与演示

实验一 透射电子显微镜 的原理与演示 解剖、观察和分析历来是生物学研究的基本手段。用于细胞解剖观察的主要工具就是显微镜,它是我们观察细胞形态最常用的工具。但其分辨率的最小数值不会小于0.2mm(紫外光显微镜的分辨率也只能达到0.1mm), 这一数值是光学显微镜分辨率的极限。限制显微镜分辨率

激光干涉技术打破纳米尺度极限 亚细胞结构观察成现实

  光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺201

偏光显微镜下碳酸盐岩结构组分和孔隙结构、构造的观察

偏光显微镜下碳酸盐岩结构组分和孔隙结构、构造的观察与描述一、目的要求掌握生物结构、粒屑结构、泥晶结构和残余结构的镜下特点;观察颗粒、泥晶、亮晶、晶粒、生物格架结构组分的特征和识别标志;掌握嫡状灰岩的岩石特征,了解鳞粒的形成环境、沉积环境及成岩后生变化环境;学会观察和描述岩石的孔隙,分析孔隙的成因及其

偏光显微镜下碳酸盐岩结构组分和孔隙结构、构造的观察

偏光显微镜下碳酸盐岩结构组分和孔隙结构、构造的观察与描述一、目的要求掌握生物结构、粒屑结构、泥晶结构和残余结构的镜下特点;观察颗粒、泥晶、亮晶、晶粒、生物格架结构组分的特征和识别标志;掌握嫡状灰岩的岩石特征,了解鳞粒的形成环境、沉积环境及成岩后生变化环境;学会观察和描述岩石的孔隙,分析孔隙的成因及其

新型活细胞组织全息定量相位显微镜技术及应用简介

KOSTER & PHIOPTICS梯度光干涉显微镜 GLIM系统是一种无需标记的用于厚组织样品的三维定量断层成像技术。由美国伊利诺伊大学电子与计算机工程学教授盖布利尔·波佩斯库(Dr. Gabriel Popescu)开发并申请专利,GLIM技术能够解决厚组织样品的多重散射

架起沟通桥梁 2019北京激光共聚焦显微年会

  分析测试百科网讯 2019年3月19日,北京市2019激光共聚焦超高分辨率显微学学术研讨会在北京天文馆隆重举行。本次研讨会由北京市电镜学会主办,北京理化分析测试技术学会承办,会议有200余人参与。分析测试百科网作为支持媒体为您带来全程报道。研讨会签到处研讨会现场北京理化分析测试技术学会电镜专业委

探索物质结构之透射电子显微镜

眼睛是人类认识客观世界的第一架“光学仪器”,但它的能力却是有限的,通常认为人眼睛的分辨率为0.1 mm。17世纪初,光学显微镜(图1)出现,可以把细小的物体放大到千倍以上,分辨率比人眼睛提高了500 倍以上,这也是人类认识物质世界的一次巨大突破。随着科学技术的不断发展,直接观察到原子是人们一直以来的

显微技术(图)

显微镜是观察细胞的主要工具。根据光源不同,可分为光学显微镜和电子显微镜两大类。前者以可见光(紫外线显微镜以紫外光)为光源,后者则以电子束为光源。—、光学显微镜(一)、普通光学显微镜普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除

光学显微镜的分类

光学显微镜是一种常用的光学仪器,主要由载物台、聚光照明系统、物镜、目镜和调焦机组成,被广泛用于多个领域中。光学显微镜有哪些类型呢?光学显微镜有多种分类方法:按使用目镜的数目可分为三目,双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理