Antpedia LOGO WIKI资讯

科学家发现全新iPS细胞诱导因子

本报讯(记者朱汉斌 通讯员黄博纯)近日,中科院广州生物医药与健康研究院裴端卿和陈捷凯实验组在iPS领域取得突破,用新思路建立了一套不包含Yamanaka因子的重编程方法。相关研究6月23日在线发表在《自然—细胞生物学》上。 该研究从体细胞阶段的因子出发,发现癌基因c-Jun与干细胞多能性完全不相容,而c-Jun抑制因子不仅促进重编程,还可以替代Yamanaka因子中最为核心的Oct4;在这一发现基础上结合研究组多年以来在重编程机理上的研究结果,组建了一套不包含Yamanaka因子的全新iPS细胞诱导因子。 随着日本科学家山中伸弥获得2012年诺贝尔奖,其2006年发现的iPS技术也越来越家喻户晓。iPS技术通过转入四个转录因子(被称为Yamanaka因子),可以将体细胞“返老还童”到胚胎干细胞状态,解决了再生医学中干细胞来源的问题,具有广阔的应用前景。 谈到新的重编程方法的发现过程,裴端卿说:“这是实验室近八年来一系......阅读全文

细胞重编程研究新突破:非哺乳类动物重编程

  将已分化的细胞重编程,令其恢复多能性是一项重要的科学突破,这一成果也因此荣获了2012年诺贝尔生理/医学奖——两位科学家因证明“成熟细胞能被重编程恢复多能性”站在的科学的最高领奖台上。不过到目前为止,这种多能性重编程应用主要还是限制在哺乳动物中。   近期一组研究人员在9月3日的eLife杂志

2012诺奖得主最新细胞重编程研究

  将成熟细胞重新编程使其可以分化为任何细胞,这一理念对于修复化疗后的受损组织或骨髓很有帮助。本月刚捧得2012年诺贝尔生理/医学奖的英国科学家约翰・戈登(John B. Gurdon)昨天在BMC旗下的Epigenetics & Chromatin research杂志上发表了他的最新研究

细胞重编程技术

细胞重编程介绍重编程体细胞重编程(somatic reprogramming)指的是分化的体细胞在特定的条件下被逆转后恢复到全能性状态,或者形成胚胎干细胞系,或者进一步发育成一个新的个体的过程。诱导体细胞重编程的方法有许多,如核移植、细胞融合、细胞提取物诱导、化学诱导以及分子调控诱导等。但到

重点专项“细胞编程与重编程相关蛋白质机器研究”启动

  9月23日,由中国科学院广州生物医药与健康研究院牵头承担的国家重点研发计划项目“蛋白质机器与生命过程调控”重点专项----“细胞编程与重编程相关蛋白质机器研究”项目实施启动会在广州生物院举行。  启动会上,广州生物院党委副书记、副院长段子渊代表项目承担单位致欢迎词,希望各位领导和专家能多提宝贵意

研究揭示体细胞重编程的起始分子机制

  近日,中国科学院广州生物医药与健康研究院-马克思普朗克(Max Planck-GIBH)再生生物医学中心Ralf Jauch及其博士生Vikas Malik主导团队揭示了转录因子诱导的体细胞多能性重编程的起始分子机制,阐明了多能性重编程对Oct4和Sox2的时态依赖性,为再生医学和诱导多能干细胞

研究发现重编程T细胞增强癌症免疫疗效

   美国圣裘德儿童研究医院的华人科学家们,发现了一种限制过继细胞疗法有效性的分子“刹车”。  这种新的治疗策略可增强癌症免疫治疗的效果,从而减缓肿瘤生长,并延长癌症小鼠的寿命。  北京时间2019年12月12日2时,《自然》发表了这项研究。  这一发现为开发更有效的过继细胞疗法,如嵌合抗原受体(C

Cell:新研究有望增加干细胞重编程效率

  单细胞RNA测序(scRNA-seq)可揭示单个细胞在一个给定时刻表达哪些基因,并且能够提供关于细胞随时间的推移如何发生变化的大量数据。然而,scRNA-seq会破坏细胞,因此科学家们无法精确追踪细胞从一种状态转变到另一种状态时所采用的发育路径。因此,人们并未太多地了解细胞在正常胚胎发育过程中或

干细胞研究突破:不经遗传修饰实现重编程

  诱导性多潜能干细胞是被国际生命科学界誉为具有里程碑意义的创新之举,需要通过特定基因的表达将体细胞重编程逆转为干细胞。然而Stem Cell上3月16日刊登的一篇文章报道了来自美国Buffalo大学的研究小组证明成人的皮肤细胞可以转化为不带遗传修饰的神经嵴细胞(干细胞的一种类型),这些干细胞可以产

周琪最新综述—体细胞重编程研究必看

  多细胞生物个体的分化细胞均通过一系列动态调控机制维持其稳态, 不同类型分化细胞之间的转化在自然条件下不会自发发生. 通过实验手段可以逆转细胞分化的进程使之改变状态, 从一种基因表达谱转换成另一套表达谱, 从而实现细胞类型的转化也即重编程.  目前已知可以通过4种不同途径, 即核移植、细胞融合、胞

Cell头条:细胞重编程研究翻开新篇章

  细胞重编程技术自问世以来引发了基础研究和临床研究的多方关注,近期一组研究人员首次证明了小鼠体细胞重编程可由调控分化的基因完成,也就是说无需多能诱导因子,就能诱导出不同的细胞命运,这令细胞重编程这一研究领域翻开了新的篇章。   据报道,2006年,日本科学家Shinya Yamanaka发现向小