Antpedia LOGO WIKI资讯

扫描电子显微镜能谱仪(EDS)原理

能谱仪结构及工作原理 X射线能量色散谱分析方法是电子显微技术最基本和一直使用的,具有成分分析功能的方法,通常称为X射线能谱分析法,简称EDS或EDX方法。它是分析电子显微方法中最基本,最可靠,最重要的分析方法,所以一直被广泛使用。 1。特征X射线的产生 特征X射线的产生是入射电子使内层电子激发而发生的现象。即内壳层电子被轰击后跳到比费米能高的能级上,电子轨道内出现的空位被外壳层轨道的电子填入时,作为多余的能量放出的就是特征X射线。高能级的电子落入空位时,要遵从所谓的选择规则(selectionrule),只允许满足轨道量子数l的变化 l=±1的特定跃迁。特征X射线具有元素固有的能量,所以,将它们展开成能谱后,根据它的能量值就可以确定元素的种类,而且根据谱的强度分析就可以确定其含量。另外,从空位在内壳层形成的激发状态变到基态的过程中,除产生X射线外,还放出俄歇电子。一般来说,随着原子序数增加,X射线产生的几率(荧光产额)......阅读全文

X射线谱仪

X射线谱仪简介编辑X射线谱仪设计有20路探测器,是此次载荷中探测器路数最多的系统,为有效预防多路探测器之间相互干扰,在硬/软件设计中还专门设计了“隔离”探测器单元功能及对太阳监测器计数率的调阈指令,以提高探测器在轨长期工作的可靠性 [1]  。X射线谱仪指向月面,由16

X射线能谱仪的原理介绍

   在许多材料的研究与应用中,需要用到一些特殊的仪器来对各种材料从成分和结构等方面进行分析研究。    其中,X射线能谱仪(XPS)就是常用仪器之一。下面详细介绍一下X射线能谱仪的基本原理、结构、优缺点及应用。    X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法

X荧光光谱仪的工作原理(一)

X荧光光谱仪(XRF)是一种较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X荧光光谱仪(WD-XRF)是用晶体分光而后由探测器接收经过衍射的特征X射线信

关于X射线荧光分析技术应用的误区

  X射线荧光分析作为工业分析技术经历了几十年的发展历程,在水泥制造业已得到广泛应用。我国水泥工业中X射线荧光分析技术的应用和发展,基本上是在近25 年中实现的。上个世纪七十年代末八十年代初,一方面随着大量新型干法水泥生产线的成套引进,大型X荧光光谱仪开始出现在我国水泥工业,另一方面,随着钙铁 分析

电子探针的工作原理及构造

 工作原理分析由莫塞莱定律可知,各种元素的特征X射线都具有各自确定的波长,并满足以下关系:通过探测这些不同波长的X射线来确定样品中所含有的元素,这就是电子探针定性分析的依据。而将被测样品与标准样品中元素Y的衍射强度进行对比,即:就能进行电子探针的定量分析。 当然利用电子束激发的X射线进行元

多层镜软X射线能谱仪的研制

软X射线能谱测量是ICF实验中的重要内容,测量意义重大。软X射线能诊断通过光谱分析,可以得到X射线总的通量,辐射温度,转换效率以及反照率。这些都是间接驱动黑腔热力学的重要参数。作为黑体腔特征诊断系统,软X射线能诊断系统测量黑体腔中发射出的X射线,可得出黑腔中辐射温度的时间变化图。针对目前常用的谱仪往

X射线荧光分析技术无损检测贵金属首饰含量中的技巧

  随着国内黄金交易市场的全面开放,无损验货接踵而来。本文从贵金属首饰无损检测应用x荧光分析技术的角度,提出一些避免误区的观点。   一、x射线荧光分析基本原理   所谓荧光,就是在光的照射下发出的光。x射线荧光就是被分析样品在x射线照射下发出的x射线,它包含了被分析样品化学组成的信息,

X射线荧光分析技术无损检测贵金属首饰含量中的技巧

  随着国内黄金交易市场的全面开放,无损验货接踵而来。本文从贵金属首饰无损检测应用x荧光分析技术的角度,提出一些避免误区的观点。   一、x射线荧光分析基本原理   所谓荧光,就是在光的照射下发出的光。x射线荧光就是被分析样品在x射线照射下发出的x射线,它包含了被分析样品化学组成的信息,

盘点丨问鼎诺贝尔奖的10大检测技术

  诺贝尔奖是以瑞典著名的化学家 阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产(3100万瑞典克朗)作为基金在1900年创立的。该奖项授予世界上在物理、化学、生理学或医学、文学、和平和经济学六个领域对人类做出重大贡献的人,于1901年首次颁发,截止2016年共授予了881位个人和23个团体。今天我们将盘点

材料成分分析仪器大全

  【成分分析简介】  成分分析技术主要用于对未知物、未知成分等进行分析,通过成分分析技术可以快速确定目标样品中的各种组成成分是什么,帮助您对样品进行定性定量分析,鉴别、橡胶等高分子材料的材质、原材料、助剂、特定成分及含量、异物等。  【成分分析分类】  按照对象和要求:微量样品分析 和 痕量成分分

X荧光光谱仪的工作原理(二)

3、检测记录系统X射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。上图是流气正比计数器结构示意图。它主要由金属圆筒负极和芯线正极组成,筒内充氩(90%)和甲烷(10%)的混合气体,X射线射入管内,使Ar原子电离,生成的Ar+在向阴极运动时,又引起其它Ar原子电离,雪崩式电离的结果,产生一脉冲信

SEM知识—元素分析的基础

元素分析的基础 X射线的产生当电子射入物质后,从物质表面会发射出各种电子、光子及X射线等电磁波。如图49所示,由于入射电子的作用,内层电子处于激发态,外层电子向内跃迁填补有空位的轨道时,会产生等同于能量差的X射线,这就是特征X射线。 由于X射线具有元素特有的能量(波长),通过对X

一文告诉你能谱仪与波谱议相比具有哪些特点

  波谱仪  波谱仪全称为波长分散谱仪(WDS)。  在电子探针中,X射线是由样品表面以下 m数量级的作用体积中激发出来的,如果这个体积中的样品是由多种元素组成,则可激发出各个相应元素的特征X射线。  被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散),即不同波长的X射线将在各自满足布拉格

能谱仪与波谱仪相比具有那些特点?

  波谱仪  波谱仪全称为波长分散谱仪(WDS)。  在电子探针中,X射线是由样品表面以下 m数量级的作用体积中激发出来的,如果这个体积中的样品是由多种元素组成,则可激发出各个相应元素的特征X射线。  被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散),即不同波长的X射线将在各自满足布拉格

一文了解能谱仪和波谱仪的对比

  波谱仪  波谱仪全称为波长分散谱仪(WDS)。  在电子探针中,X射线是由样品表面以下 m数量级的作用体积中激发出来的,如果这个体积中的样品是由多种元素组成,则可激发出各个相应元素的特征X射线。  被激发的特征X射线照射到连续转动的分光晶体上实现分光(色散),即不同波长的X射线将在各自满足布拉格

【科普】X射线能谱仪和波谱仪的优缺点

  一,能谱仪  能谱仪全称为能量分散谱仪(EDS)。  目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。  Si(Li)能谱仪的优点:  (1)分析速度快  能谱仪可以同时接受和检测所有不同能量的X射

X射线能谱仪和波谱仪的优缺点

能谱仪全称为能量分散谱仪(EDS)。  目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。Si(Li)能谱仪的优点  分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光子信号,

X射线能谱仪和波谱仪的优缺点

  能谱仪全称为能量分散谱仪(EDS)。  目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个以Li为施主杂质的n-i-p型二极管。  Si(Li)能谱仪的优点  分析速度快  能谱仪可以同时接受和检测所有不同能量的X射线光子信号,故可在几分

关于X射线仪器和热分析仪器联用的探讨

众所周知,热分析仪器可以和很多分析类仪器联用。比较常见的有:红外光谱(FTIR)、气相色谱(Gas Chromatography)、质谱(Mass Spectrometry)、显微镜等。通过和这些分析仪器联用可以弥补热分析仪器的一些局限性,更有效地分析样品的物理、化学特性。然而,在材料分析中,X射线

扫描电子显微镜能谱仪(EDS)原理

  能谱仪结构及工作原理  X射线能量色散谱分析方法是电子显微技术最基本和一直使用的,具有成分分析功能的方法,通常称为X射线能谱分析法,简称EDS或EDX方法。它是分析电子显微方法中最基本,最可靠,最重要的分析方法,所以一直被广泛使用。  1。特征X射线的产生  特征X射线的产生是入射电子使内层电子

您关注这些仪器了吗?安利五台每天最受网友关注的【X射线能谱仪(EDS)】

Thermo Scientific QuasOr 电子背散射衍射【品牌】赛默飞【型号】Thermo Scientific QuasOr电子背散射衍射EBSD在扫描电子显微镜下通过对多种材料物理属性有影响的晶体结构表征用以做微区纳米结构分析,特别是当它与微区能谱和波谱配合形成一体化综合分析时,其渐已成

您关注这些仪器了吗?安利五台每天最受网友关注的【X射线能谱仪(EDS)】

Thermo Scientific QuasOr 电子背散射衍射【品牌】赛默飞【型号】Thermo Scientific QuasOr电子背散射衍射EBSD在扫描电子显微镜下通过对多种材料物理属性有影响的晶体结构表征用以做微区纳米结构分析,特别是当它与微区能谱和波谱配合形成一体化综合分析时,其渐已成

波散XRF与能散XRF的区别

  一.X射线荧光分析仪简介  X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶

γ射线谱仪:获取全月表元素含量与分布

由于各种物质受激发发出的X/γ射线不同,嫦娥一号卫星通过X/γ射线谱仪,分析月球表面的矿物组成和岩石类型,评估其铁、钛等14种元素含量和物质类型分布特点,初步了解月球的构成和资源。 为什么一项任务要用两个设备来共同完成呢?γ射线谱仪分系统主任设计师常进向《科学时报》记者解释道:“两个设备的探测能量

XRD、XPS、XRF、红外、核磁样品制备及注意事项!

  红外光谱样品制备  红外光谱是未知化合物结构鉴定的一种强有力的工具,尤其近几年来各种取样技术和联用技术的迅速发展,使得它成为分析化学应用中最广泛的仪器之一。  样品要求:  1、气体、液体(透明,糊状)、固体(粉末、粒状、片状…)。  气体样品:采用气体吸收池进行测试,吸收峰的强度可以通过调整气

X荧光光谱仪分类及比较

   一、X-射线荧光光谱仪(XRF) 简介   X-射线荧光光谱仪(XRF)是一种较新型可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。  波长色散型X射线荧光光谱仪(

2013年度北京电子显微学年会大会报告(二)

  2013年12月24日, 2013年度北京市电子显微学年会在北京天文馆隆重召开,来自科研院所、高等院校、仪器耗材厂商的200余位电子显微学专家学者、技术工程师,参加了此次电子显微学年会。大会当日下午,来自中国地质科学院的周剑雄老师,布鲁克公司的刘军涛先生、牛津公司的孟丽君女士、北京建筑

波长色散X射线荧光光谱仪的新进展

  X射线荧光光谱分析在20世纪80年代初已是一种成熟的分析方法,是实验室、现场分析主、次量和痕量元素的方法之一。X射线荧光光谱仪(XRF)是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线),从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有波长色散型和能量色

现代扫描电镜的发展及其在材料科学中的应用

1 扫描电镜原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。

金属和合金微观分析常用技术盘点

  一种金属或合金的性能取决于其本身的两个属性:一个是它的化学成分,另一个是它内部的组织结构。所以,对金属材料的成分和组织结构进行精确表征是金属材料研究的基本要求,也是实现性能控制的前提。材料分析的内容主要包括形貌分析、物相分析、成分分析、热性能分析、电性能分析等。本文就金属材料的形貌分析、物相分析