Antpedia LOGO WIKI资讯

纳米夹层技术为太阳能电池“减肥”

据物理学家组织网6月25日报道,美国北卡罗来纳州立大学的科研人员表示,他们能够借助纳米夹层技术制成更“苗条”的薄膜太阳能电池,而不影响电池吸收太阳能的能力。同时,这也将大幅降低新型电池的制造成本,并可广泛应用于其他众多太阳能电池材料,如碲化镉和铜铟镓硒(CIGS)等。 论文的联合作者、该校材料科学和工程系的助理教授曹林佑(音译)说,他们能够借助纳米夹层技术制成具有超薄活性层的太阳能电池,例如,其可以在电池表面创造厚度仅为70纳米的非晶硅活性层。“这是一项重大的改进,因为目前市场上同样使用非晶硅的普通薄膜太阳能电池,其活性层可达300纳米至500纳米厚,而活性层正是太阳能电池中吸收阳光并将其转化为电力或化学燃料的功臣。” 虽然新技术很大程度上依赖于传统的制造过程,但制造的成品却有很大差异。首先需要借助标准光刻技术在基片上制成图案,这种图案可以描画由透明介质材料组成的结构轮廓,其测量值介于 200纳米至300纳米......阅读全文

新技术为太阳能电池“减肥” 吸光能力不逊色

  据物理学家组织网6月25日报道,美国北卡罗来纳州立大学的科研人员表示,他们能够借助纳米夹层技术制成更“苗条”的薄膜太阳能电池,而不影响电池吸收太阳能的能力。同时,这也将大幅降低新型电池的制造成本,并可广泛应用于其他众多太阳能电池材料,如碲化镉和铜铟镓硒(CIGS)等。   论文的联合作者、该校

金纳米层可改善太阳能电池转换效率

  在太阳能的世界,有机光电太阳能电池具有广泛的潜在应用,不过它们至今仍被认为是处于起步阶段。这些用有机高分子或小分子作为半导体的碳基电池虽然比利用无机硅片制作的常规太阳能电池更薄且生产成本更低,但是它们将光能转换成电能的效率却并不理想。   然而,据美国物理学家组织网8月17日(北

电化学电池的发展趋势

电化学电池的发展趋势  随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上*个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属电极

电化学电池的发展趋势

电化学电池的发展趋势  随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上*个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属