细数核磁共振NMR的历史和那些重要贡献者

【摘要】本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面都有重大贡献的核磁共振研究作为典型案例进行研究,清晰地呈现出了核磁共振研究鲜明的阶段性特征,以及由这一典型案例所揭示出的基础研究与应用研究之间动态变化着的、复杂的互动关系。最后通过分析和总结,得出了这一典型案例对我国的科技发展和科技创新的一些启示。 关键词:核磁共振;诺贝尔奖;基础理论;应用研究 中图分类号:04-09 1二战结束之前核磁共振实验的发展 1.1核磁共振研究的开端,这个时期主要以物理学的纯基础理论研究为特征 自从十九世纪末,二十世纪初人类对于微观世界的科学探究真正起步后,不论是在实验还是在理论方面都在不断取得突破和进展。正如麻省理工学院物理系电子研究实验室的丹尼尔·克莱普纳(Daniel Kleppner)所说,二十世纪初那些深刻改变了我们的世界观的,物理学天才们的思想和成就,主要是建立在当时重要的物理实验发现之上的[1]。可......阅读全文

细数核磁共振NMR的历史和那些重要贡献者

  【摘要】本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面都有重大贡献的核磁共振研究作为典型案例进行研究,清晰地呈现出了核磁共振研究鲜明的阶段性特征,以及由这一典型案例所揭示出的基础研究与应用研究之间动态变化着的、复杂的互动关系。最后通过分析和总结,得出了这一典型案例对我国的科

细数核磁共振NMR的历史和那些重要贡献者

  【摘要】本文选取不论是对于众多学科的基础理论方面,还是在人类的生产、生活方面都有重大贡献的核磁共振研究作为典型案例进行研究,清晰地呈现出了核磁共振研究鲜明的阶段性特征,以及由这一典型案例所揭示出的基础研究与应用研究之间动态变化着的、复杂的互动关系。最后通过分析和总结,得出了这一典型案例对我国的科

核磁共振NMR

NMR(Nuclear Magnetic Resonance)为核磁共振。是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。基本原理自旋量子数I不为零的核与

核磁共振(NMR)实验

核磁共振(Nuclear Magnetic Resonance),是指具有磁矩的原子核在静磁场中,受电磁波(通常为射频电磁振荡波RF)激发,而产生的共振跃迁现象。1945年12月,美国哈佛大学珀塞尔(E. M. Purcell)等人,首先观察到石腊样品中质子(即氢原子核)的核磁共振吸收信号。1946

核磁共振(NMR)原理

以氢核为例,由于带电核的旋转,会产生一个微小的磁场,一般而言,自旋杂乱无章,但若将其置于较强磁场中,其必定沿着磁场的方向重新排列,当核的自旋轴偏离了外加磁场的方向时,核自旋产生的磁场即会与外磁场相互作用,使原子核除了自旋之外,还会沿着圆锥形的侧面围绕原来的轴摆动,(类似于陀螺的摆动),这种运动方式称

医学突破——细数那些被否定的过去

  最初的嘲笑或否定    尽管医学通常是在人体证据积累下逐步进步,但有时会出现“跳跃式”发展。这些“跳跃式”发展一开始通常会面对传统观点的挑战。今天的诊疗标准源于昨天试验性治疗,再往前或许仅仅是某个人的一个“幻想”.    医学发展史中有许多广为人知的例子:某个观点最初不被世俗接受甚至是讥讽,但后

细数赛默飞的那些测霾利器

本页内容已删除!

细数那些实验室常用的操作方法!

称量称量是指测量物体的轻重。将物体和砝码在天平上进行比较以求得物体的重量的过程,也叫称衡。称量是分析化学实验的重要操作。要取得准确称量结果,操作者必须遵守天平使用规则。化学药品和试样的称量都要在专用的容器中进行。称量方法有两种:①增量法,先将容器(如小皿、称量纸等)的重量称出,然后调整砝码至所需重量

细数那些实验室常用的操作方法!

   在实验中zui常用到的操作有称量、定容、滴定、过滤、萃取、蒸馏、离心、消解、加热、蒸发、干燥、灼烧、粉碎、研磨、过筛、沉淀等,今天分别来给大家介绍一下,也欢迎亲们留言补充、指正。 称量    称量是指测量物体的轻重。将物体和砝码在天平上进行比较以求得物体的重量的过程,也叫称衡。称量是分析化学实

细数那些实验室常用的操作方法!

在实验中最常用到的操作有称量、定容、滴定、过滤、萃取、蒸馏、离心、消解、加热、蒸发、干燥、灼烧、粉碎、研磨、过筛、沉淀等,今天分别来给大家介绍一下,也欢迎亲们留言补充、指正。称量称量是指测量物体的轻重。将物体和砝码在天平上进行比较以求得物体的重量的过程,也叫称衡。称量是分析化学实验的重要操作。要取得

核磁共振(NMR)在能源领域应用

与其他类型的分析仪器相比,NMR设备最大的优点即在于无损检测,同时迅速的分析物质的化学/结构信息,因此其应用面广泛。主要应用在煤炭、石油领域,近年来固体NMR技术也已被广泛应用于电化学储能体系。

核磁共振波谱法基本的NMR技术

共振频率当放置在磁场中时,核磁共振活性的原子核(比如1H和13C),以同位素的频率特性吸收电磁辐射。共振频率,原子核吸收的能量以及信号强度与磁场强度成正比。比方说,在场强为21特斯拉的磁场中,质子的共振频率为900MHz。尽管其他磁性核在此场强下拥有不同的共振频率,但人们通常把21特斯拉和900MH

核磁共振(NMR)应用领域之石油

NMR技术于20世纪末开始应用于石油地质研究。如今应用范围涉及到石油地质、石油测井、石油化工等领域。在地质勘探领域中,主要使用傅里叶核磁变换共振波谱仪以及多脉冲电磁分辨谱等设备。主要应用包括:分类干酪根、确定有机质成熟度、评价生油浅量等。在测井领域,主要利用核磁测井技术。基本原理是在井中放置一块磁体

核磁共振(NMR)应用领域之煤炭

NMR技术在煤炭化学组成和物理形态分析中发挥着越来越重要的作用。其主要优势在于检测对象的状态几乎不受限制,可以是原煤或经过加工处理的煤炭,也可以是煤炭的气化、热解或液化产物,由于其非接触式快速测量的特点,煤炭化工过程不同阶段的中间产物也可以检测。在煤炭检测使用到的NMR技术方法主要有2种:液体NMR

NMR(Nuclear-Magnetic-Resonance)为核磁共振的应用介绍

核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。在世界的许多大学、研究机构和企业集

核磁共振(NMR)在体内药物分析中的应用

核磁共振(NMR)在体内药物分析中,可用于药物及其代谢物的结构鉴定、代谢途径归属、定量分析以及药物与内源性物质相互作用的研究等。与其它分析方法相比,具有如下优点:①简便性:无需对样品进行繁杂的提取或衍生化,减少了由此带来的误差;②无损伤性:对取样量有限的生物样品经NMR分析后还可用于其它处理,甚至可

核磁共振(NMR)在体内药物分析中的应用

核磁共振(NMR)在体内药物分析中,可用于药物及其代谢物的结构鉴定、代谢途径归属、定量分析以及药物与内源性物质相互作用的研究等。与其它分析方法相比,具有如下优点:①简便性:无需对样品进行繁杂的提取或衍生化, 减少了由此带来的误差;②无损伤性:对取样量有限的生物样品经NMR分析后还可用于其它处理, 甚

核磁共振波谱法(NMR)常见问题

1、元素周期表中所有元素都可以测出核磁共振谱吗?不是。首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。2、怎么在H谱中更好的显示活泼氢?与O、S

核磁共振波谱法(NMR)常见问题

1、元素周期表中所有元素都可以测出核磁共振谱吗? 不是。首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。 2、怎么在

安捷伦为核磁共振领域杰出贡献者颁发2010年度罗素瓦里安奖

安捷伦科技为核磁共振领域的杰出贡献者颁发2010年度罗素瓦里安奖   2010 年 8 月 23 日,加利福尼亚州圣克拉拉市和澳大利亚凯恩斯市 — 安捷伦科技公司(纽约证交所:A)宣布,哈佛大学化学与化学生物学系以及斯特拉斯堡大学 ISIS 化学生物物理学实验室的名誉教授 Martin K

关于核磁共振波谱NMR的知识(原理、用途、分析、问题)

核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。原理在强磁场中,某些元素的原子核和电子能量本身所具有的磁性,被分裂成两个或两个

关于核磁共振波谱NMR的知识(原理、用途、分析、问题)

核磁共振波谱法(Nuclear Magnetic Resonance,简写为NMR)与紫外吸收光谱、红外吸收光谱、质谱被人们称为“四谱”,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,亦可进行定量分析。 [点击图片可在新窗口打开] 原理 在强磁场

核磁共振NMR波谱法常见问题“大杂烩”

Q:NMR能做什么?   A:NMR(核磁共振波谱法)是研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析。   核磁共振是有机化合物结构鉴定的一个重要手段,一般根据化学位移鉴定基团;由偶合分裂峰数、偶合常数

核磁共振NMR波谱法常见问题“大杂烩”

  Q:NMR能做什么?  A:NMR(核磁共振波谱法)是研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析。  核磁共振是有机化合物结构鉴定的一个重要手段,一般根据化学位移鉴定基团;由偶合分裂峰数、偶合常数确定基团联结关系;根据各H峰

核磁共振波谱仪的发展历史

1946年,哈佛大学珀赛尔用吸收法首次观测到石蜡中质子的核磁共振(NMR),几乎同时美国斯坦福大学布洛赫(F.Block)用感应法发现液态水的核磁共振现象。因此,他们分享了1952年的诺贝尔物理学奖金。核磁共振的方法与技术作为分析物质的手段,由于其可深入物质内部而不破坏样品,核磁共振波谱仪具有迅速、

核磁共振谱技术的历史简介

  核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核对射频辐射(Radio-frequency Radiation)的吸收,它是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析。  核磁

细数饲料液相色谱仪的重要组成部分

 饲料液相色谱仪根据固定相是液体或是固体,又分为液-液色谱(LLC)及液-固色谱(LSC)。液相色谱仪由高压泵、色谱柱、检测器、温度控制系统、进样系统,对仪器进行简单的故障诊断;熟悉各种进口HPLC、LC-MS仪器及配件的市场情况者,图形化的工作站界面友好;可同时控制多台液相色谱仪;性能优异的进样系

核磁共振成像发展历史

核磁共振成像术,简称核磁共振、磁共振或核磁,是80年代发展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRl)是利用核磁共振成像技术进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人分别发现,作为一种分析手段广泛应

核磁共振仪NMR液氮罐使用方法及选型

   核磁共振(NMR)波谱是一种基于自旋量子数非零原子核在外部低温超导强磁场中吸收与其裂分能级间能量差相对应的射频能量而产生共振现象的分析方法。    核磁共振波谱通过不同核的波谱、化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的种类、个数、存

简述核磁共振技术的发展历史

  核磁共振技术的历史   1930年代,物理学家伊西多·拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。由于这项研究,拉比于1944年获得了诺贝尔物理学奖。  1946年两位美国科