Antpedia LOGO WIKI资讯

柴之芳:HybridMSinmetallomicsandmetalloproteomics:Acasestudy

中国科学院高能物理研究所 柴之芳院士 2014年4月26日,首届全国质谱分析学术研讨会在北京西郊宾馆盛大开幕。来自中国科学院高能物理研究所的柴之芳院士带来了题为《Hybrid MS in metallomics and metalloproteomics:A case study》的报告。 柴之芳院士首先讲述了金属组学是一门研究生物体系、尤其是细胞中各种金属的分布、定位、含量、种态、及其功能的交叉学科。而AD的主要病因是由于纤维状Aβ肽组成的淀粉样斑块的沉淀;Aβ由淀粉样前体蛋白APP有序分裂产生的40到42氨基酸组成;Aβ纤维化和聚集机理不清,一种机理是Cu和Zn与APP及Aβ作用。柴院士团队研究目的是:定量研究脑组织中金属的代谢好变化;同步测定斑块形成过程中的金属和蛋白;研究脑组织氧化损伤中金属的化学种态及其作用。用到的研究方法有SR-μXRF;IC......阅读全文

金属所纳米碳非金属催化本质研究取得进展

  纳米碳材料在烷烃的氧化脱氢等反应中展现出反应活性高、烯烃产物选择性高、催化活性保持时间长等优势,其作为一种可再生的环境友好催化剂,可以替代传统的金属及其氧化物催化剂直接应用于烷烃催化转化等相关反应中。经过近几年的迅猛发展,纳米碳催化领域在新型催化剂的开发制备、新颖催化反应体系的建立等方面获得了多

锂金属电池的研究背景介绍

  虽然石墨已被证明是迄今为止用于制作阳极的最好和最可靠物质,但它容纳的离子数量有限。研究人员一直希望用锂金属箔来取代石墨,它可以容纳更多的离子,但通常锂金属箔与电解质会产生不良反应,从而导致电解质过热,甚至导致燃烧。  此前,来自麻省理工学院的另一家公司A123 Systems由于技术不成熟而宣布

金属所面心立方金属层错能效应研究取得进展

  随着现代工业的迅速发展,工业界对于具有高强度、高塑性、高疲劳性能的金属材料具有重要的需求。中国科学院金属研究所材料疲劳与断裂实验室以Cu和Cu合金(Cu-Al,Cu-Zn等)模型材料为研究对象,经过近十年的研究探索,系统地揭示了层错能对微观结构、拉伸性能、强韧化机制以及疲劳行为等方面的影响规律,

金属所面心立方金属层错能效应研究取得进展

  随着现代工业的迅速发展,工业界对于具有高强度、高塑性、高疲劳性能的金属材料具有重要的需求。中国科学院金属研究所材料疲劳与断裂实验室以Cu和Cu合金(Cu-Al,Cu-Zn等)模型材料为研究对象,经过近十年的研究探索,系统地揭示了层错能对微观结构、拉伸性能、强韧化机制以及疲劳行为等方面的影响规律,

金属所纳米碳材料负载金属催化剂研究获进展

  积碳是催化剂在催化反应过程中普遍发生的现象,尤其是在乙苯直接脱氢体系中,反应物乙苯分子在金属氧化物催化剂表面很容易快速的产生积碳,导致催化剂的失活。近期,中国科学院金属研究所沈阳材料科学国家(联合)实验室催化材料研究部刘洪阳副研究员和苏党生研究员,利用乙苯直接脱氢过程反应中的积碳过程,巧妙地设计

金属铋纳米带二维金属表面态研究获进展

  近期,中国科学院强磁场科学中心田明亮研究员课题组在金属铋纳米带研究中取得了新进展。研究人员在超薄的单晶铋纳米带中观察到具有典型二维特征的Shubnikov-de Haas(SdH)量子振荡行为,同时低磁场各向异性磁电阻结果确认了薄样品中的量子输运行为来源于二维表面态。实验结果首次清晰地给出了Bi

对磁性金属纤维的设备研究

      随着大家对隐身技术的不断提高,我们对其中使用的材料质量要求也在不断的升高,我们在对新型的吸收剂进行研究的时候,已经开始使用仪器磁性金属检测仪来辅助我们的工作了,之前的人力已经无法满足大家的需求。纤维素是具有很多优势的,它独特的形状以及一些力学的性能上都是被广大的研究人员所青睐的。因此可

金属钝化膜击破机制研究取得进展

  中国科学院金属研究所固体原子像研究部研究员马秀良、副研究员张波和博士王静等人组成的介质条件下材料电子显微学研究小组在原子尺度下直接获得金属表面超薄钝化膜的剖面显微图像,并揭示了氯离子击破钝化膜的作用机制。7月2日,英国《自然-通讯》(Nature Communications)在线发表了该项研究

金属-有机框架材料研究取得系列进展

  金属有机框架材料(Metal-Organic Frameworks, MOFs)是一类由有机配体和无机金属离子/金属簇自组装形成的新型晶态多孔材料,具有比表面积高、结构可调和孔环境可修饰等优点,在甲烷、氢气等能源气体存储和二氧化碳分离等领域具有巨大的潜在应用价值。   近日,中国

金属所低氧稀土钢研究获进展

稀土元素电子结构独特,具有优异的磁、光、电等物理和化学特性,在多种材料中发挥重要作用。自20世纪20年代研究提出稀土加入到钢中,表明微量稀土添加显著提高钢的韧塑性、耐磨、耐热、耐蚀性能等。然而,稀土钢在工业应用时遭遇难题:工艺不顺行,存在浇口严重堵塞的问题;稀土在钢中添加后,钢的性能剧烈波动,存在稳