发布时间:2020-08-24 22:01 原文链接: ATP的生成、储存和利用(三)

  五、氧化磷酸化抑制剂

  氧化磷酸化抑制剂可分为三类,即呼吸抑制剂、磷酸化抑制剂和解偶联剂。

  (一)呼吸抑制剂 这类抑制剂抑制呼吸链的电子传递,也就是抑制氧化,氧化是磷酸化的基础,抑制了氧化也就抑制了磷酸化。呼吸链某一特定部位被抑制后,其底物一侧均为还原状态,其氧一侧均为氧化态,这很容易用分光光度法(双波长分光光度计)检定,重要的呼吸抑制剂有以下几种。

  鱼藤酮(rotenone)系从植物中分离到的呼吸抑制剂,专一抑制NADH→CoQ的电子传递。

  抗霉素A(actinomycin A)由霉菌中分离得到,专一抑制CoQ→Cyt c的电子传递。

  CN、CO、NaN3和H2S均抑制细胞色素氧化酶。

  (二)磷酸化抑制剂 这类抑制剂抑制ATP的合成,抑制了磷酸化也一定会抑制氧化。

  寡霉素(oligomycin)可与F0的OSCP结合,阻塞氢离子通道,从而抑制ATP合成。

  二环己基碳二亚胺(dicyclohexyl carbodiimide,DCC)可与F0的DCC结合蛋白结合,阻断H+通道,抑制ATP合成。栎皮酮(quercetin)直接抑制参与ATP合成的ATP酶。

  (三)解偶联剂(uncoupler) 解偶联剂使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂作用的本质是增大线粒体内膜对H+的通透性,消除H+的跨膜梯度,因而无ATP生成,解偶联剂只影响氧化磷酸化而不干扰底物水平磷酸化,解偶联剂的作用使氧化释放出来的能量全部以热的形式散发。动物棕色脂肪组织线粒体中有独特的解偶联蛋白,使氧化磷酸化处于解偶联状态,这对于维持动物的体温十分重要。

  常用的解偶联剂有2,4-二硝基酚(dinitrophenol,DNP),羰基-氰-对-三氟甲氧基苯肼(FCCP),双香豆素(dicoumarin)等,过量的阿斯匹林也使氧化磷酸化部分解偶联,从而使体温升高。

  过量的甲状腺素也有解偶联作用,甲状腺素诱导细胞膜上Na+-K+-ATP酶的合成,此酶催化ATP分解,释放的能量将细胞内的Na+泵到细胞外,而K+进入细胞,Na+-K+-ATP酶的转换率为100个分子ATP/秒,酶分子数增多,单位时间内分解的ATP增多,生成的ADP又可促进磷酸化过程。甲亢病人表现为多食、无力、喜冷怕热,基础代谢率(BMR)增高,因此也有人将甲状腺素看作是调节氧化磷酸化的重要激素。

  六、氧化磷酸化的调节

  机体的氧化磷酸化主要受细胞对能量需求的调节

  (一)ATP/ADP值对氧化磷酸化的直接影响 线粒体内膜中有腺苷酸转位酶,催化线粒体内ATP与线粒体外ADP的交换,ATP分子解离后带有4个负电荷,而ADP分子解离后带有3个负电荷,由于线粒体内膜内外有跨膜电位(△ψ),内膜外侧带正电,内膜内侧带负电,所以ATP出线粒体的速度比进线粒体速度快,而ADP进线粒体速度比出线粒体速度快。Pi进入线粒体也由磷酸转位酶催化,磷酸转位酶催化OH与Pi交换,磷酸二羧酸转位酶催化Pi2-与二羧酸(如苹果酸)交换。

  当线粒体中有充足的氧和底物供应时,氧化磷酸化就会不断进行,直至ADP+Pi全部合成ATP,此时呼吸降到最低速度,若加入ADP,耗氧量会突然增高,这说明ADP控制着氧化磷酸化的速度,人们将ADP的这种作用称为呼吸受体控制。

  机体消耗能量增多时,ATP分解生成ADP,ATP出线粒体增多,ADP进线粒体增多,线粒体内ATP/ADP值降低,使氧化磷酸化速度加快,ADP+Pi接受能量生成ATP。机体消耗能量少时,线粒体内ATP/ADP值增高,线粒体内ADP浓度减低就会使氧化磷酸化速度减慢。

  (二)ATP/ADP值的间接影响 ATP/ADP值增高时,使氧化磷酸化速度减慢,结果NADH氧化速度减慢,NADH浓度增高,从而抑制了丙酮酸脱氢酶系、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系和柠檬酸合成酶活性,使糖的氧化分解和TCA循环的速度减慢。

  (三)ATP/ADP值对关键酶的直接影响 ATP/ADP值增高会抑制体内的许多关键酶,如变构抑制磷酸果糖激酶、丙酮酸激酶和异柠檬酸脱氢酶,还能抑制丙酮酸脱羧酶、α-酮戊二酸脱氢酶系,通过直接反馈作用抑制糖的分解和TCA循环。

  七、高能磷酸化合物的储存和利用

  无论是底物水平磷酸化还是氧化磷酸化,释放的能量除一部分以热的形式散失于周围环境中之外,其余部分多直接生成ATP,以高能磷酸键的形式存在。同时,ATP也是生命活动利用能量的主要直接供给形式。

  (一)高能化合物

  人体存在多种高能化合物,但这些高能化合物的能量并不相同。

  体外实验中,在pH7.0,25℃条件下,每克分子ATP水解生成ADP+Pi时释放的能量为7.1千卡或30.4千焦耳,在体内,pH7.4,37℃,ATP、ADP+Pi、Mg2+均处于细胞内生理浓度的情况下,每克分子ATP水解生成ADP+Pi时释放的能量为33.5-50千焦耳或8-12千卡(表6-4)。

表6-4 几种常见高能化合物水解时释放的能量

化合物 千焦耳/克分子 千卡/克分子
磷酸烯醇式丙酮酸 -62.1 -14.8
1,3-二磷酸甘油酸 -49.5 -11.8
磷酸肌酸 -43.9 -10.5
乙酰CoA -31.4 -8.2
ATP -30.4 -7.3
S-腺苷蛋氨酸 -29.3 -7.0
F-6-P -15.6 -3.8
谷氨酰胺 -14.2 -3.4
G-6-P -13.48 -3.3

  卫生学规定,中度体力劳动者每日每kg体重需供给能量34-40千卡,若一成人重70kg,从事中度体力劳动,则每日应供应含能量2450千卡的食物,其中40%的能量转变成化学能储存于ATP分子的高能键中,这一部分能量应为2450×0.4=980.0千卡,按每克分子ATP水解生成ADP+Pi释放7.3千卡能量计算,应当合成:980÷7.3=134.3克分子ATP,ATP的分子量为507.22,所以134.3克分子ATP重达68.12kg,这足以表明ATP在体内的代谢十分旺盛。

  ATP在能量代谢中之所以重要,就是因为ATP水解时的标准自由能变化位于多种物质水解时标准自由能变化的中间,它能从具有更高能量的化合物接受高能磷酸键,如接受PEP、1,3-二磷酸甘油、磷酸肌酸分子中的~Pi生成ATP,ATP也能将~Pi转移给水解时标准自由能变化较小的化合物,如转移给葡萄糖生成G-6-P。


相关文章

生命进化中“遗忘”的化学反应再现

生命起源是科学界迄今无法破解的谜团。其中一个关键问题是,地球上生命的历史有多少被“遗忘”了?某个物种通过生化反应逐渐消失很常见,如果这种情况发生很多物种中,那么生命化学史上可能会充斥着缺失的反应。现在......

深圳先进院等设计新型“人工光细胞”构建方法

将高效吸收光能的半导体材料与高选择性催化的活细胞集成,合成新的人工体系(“人工光细胞”),利用微生物的优异胞内催化能力将半导体吸收的光能转化为化学能,可潜在提高人工光合作用的效率和特异性生产复杂化合物......

用阳光给线粒体“充电”或有助延寿

在人体中用太阳光给细胞充电的前景似乎更像是科幻小说,而非科学。不过,一项生命科学新研究从可再生能源领域借鉴了一项技术,表明基因工程线粒体可将光能转化为细胞可利用的化学能,最终延长秀丽线虫的寿命,这些发......

星形胶质细胞衍生的ATP为ASD的潜在分子参与者

自闭症谱系障碍(ASD)是一种常见的神经发育障碍。ASD的潜在机制尚不清楚。在ASD患者和动物模型中注意到星形胶质细胞的改变。然而,星形胶质细胞功能障碍是小鼠ASD样表型的因果关系还是结果尚不清楚。2......

研究揭示钠钾ATP酶抑制剂抗日本乙型脑炎病毒感染机理

近日,国际学术期刊AntimicrobialAgentsandChemotherapy(《抗微生物制剂与化学治疗》)在线发表了中国科学院武汉病毒研究所/生物安全大科学研究中心肖庚富、王薇团队的最新研究......

Nature:在线粒体中鉴定出一种ATP敏感性的钾离子通道

线粒体以ATP的形式为内源性反应提供化学能,它们的活性必须满足细胞能量需求,但是将这种细胞器性能与ATP水平相关联在一起的机制却知之甚少。在一项新的研究中,来自意大利帕多瓦大学的研究人员证实一种存在于......

化学所发表ATP合酶体外重组综述文章

以天然生物活性分子为基元,利用分子组装策略构建新型的仿生体系,模拟生命基本单元的结构与功能,能有助于在分子层面上理解与认知生物活动的本质与物理化学机制,已发展成为组装生物学的研究新方向。ATP合酶是自......

发现介导癌细胞关键生命活动的蛋白质

蛋白质是生命的组成部分——在细胞内,蛋白质结合成大型的大分子复合物,即蛋白质的联合体,它们相互协作以完成特定的功能。大量的癌症研究集中在寻找这些蛋白质复合物的抑制剂。像mTOR和ATR这样的激酶,以及......

我国学者通过人工叶绿体组装系统实现可控、高效ATP合成

光合磷酸化是自然界光合作用中最重要的环节之一,从根本上决定了光能到化学能的转变,也是高等植物生命活动中化学合成与能量转化的基础。三磷酸腺苷合成酶(ATP合酶)催化生成三磷酸腺苷(ATP)的效率是评价光......

高血糖会导致每个β细胞每秒泄漏10万个ATP分子

人类关于糖尿病的最早记载,始于公元前1500年的古埃及。虽然在接下来的3500多年里,糖尿病从可怕的绝症变成了可防可控的慢性病,但是时至今日,我们对于糖尿病究竟是如何发生的依然知之甚少。也正是这份无知......