发布时间:2019-04-23 07:18 原文链接: AutomatedGenomicDNAExtraction

实验概要

This section  provides a general protocol for automated isolation of genomic DNA from  10-20 µl blood samples in a 96-well format using the ChargeSwitch® 20µl blood kit (CS11010-10). Use this general protocol to develop the script for your liquid handling robot.

主要试剂

ChargeSwitch® Lysis Buffer (L12)

Proteinase K

ChargeSwitch® Magnetic Beads

ChargeSwitch® Purification Buffer (N5)

ChargeSwitch® Wash Buffer (W12)

ChargeSwitch® Elution Buffer (E5) or TE Buffer (not supplied; 10 mM Tris-HCl, 1 mM EDTA, pH 8.5)

主要设备

Liquid handling robot configured to process samples in 96-well plates

96 x 2 ml deep well plate(s)

96 x 300 µl U-bottomed microtiter plate

实验材料

10-20 µl blood samples

实验步骤

Before Starting
Perform the following before beginning:

  • Prepare Lysis Mix: For each sample, mix 0.5 ml of ChargeSwitch®  Lysis Buffer (L12) and 5 µl of Proteinase K to prepare the Lysis Mix.  Scale up the volume of reagents used (based on number of samples) to  prepare a master mix.

  • Prepare Purification Mix: For each sample, mix 50 µl of ChargeSwitch® Purification Buffer (N5) and 20 µl of ChargeSwitch®  Magnetic Beads (make sure that the beads are thoroughly resuspended) to  prepare the Purification Mix. Scale up the volume of reagents used  (based on number of samples) to prepare a master mix.

Automated Protocol
Follow the protocol below to isolate genomic DNA from 10-20 µl blood samples. The volumes given are on a per sample basis.

  1. Start with 96 x 10-20 µl blood samples in a 96 x 2 ml deep well plate.

  2. Add  500 µl of Lysis Mix and incubate at room temperature for 10 minutes.  Once during the incubation, pipet up and down gently 15 times to mix.  Set the pipette tip to 350 µl and avoid forming bubbles.

  3. Add 70 µl of Purification Mix (make sure that the beads are thoroughly resuspended)

  4. Shake at medium fast speed (e.g. pulse, 10 seconds) to evenly distribute the magnetic beads within the solution.

  5. Shake samples rapidly for 20 seconds to mix.

  6. Wait for 30 seconds.

  7. Move samples to the 96-Well Magnetic Separator.

  8. Wait for 90 seconds.

  9. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

  10. Remove samples from the 96-Well Magnetic Separator.

  11. Add 500 µl of ChargeSwitch®  Lysis Buffer (L12; no Proteinase K) and shake samples rapidly for 20  seconds to evenly distribute the magnetic beads within the solution.

  12. Add 50 µl of ChargeSwitch® Purification Buffer (N5) and shake at medium speed for 20 seconds to mix. Samples should appear clear, with no brown flecks.

  13. Wait for 30 seconds.

  14. Move samples to the 96-Well Magnetic Separator.

  15. Wait for 60 seconds.

  16. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

  17. Remove samples from the 96-Well Magnetic Separator.

  18. Add 500 µl of ChargeSwitch® Wash Buffer (W12).

  19. Shake at medium speed (e.g. pulse, 10 seconds) to evenly distribute the magnetic beads within the solution.

  20. Move samples to the 96-Well Magnetic Separator.

  21. Wait for 60 seconds.

  22. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

  23. Leave samples on the 96-Well Magnetic Separator for the second wash.

  24. Add 500 µl of ChargeSwitch® Wash Buffer (W12).

  25. Wait for 30-60 seconds.

  26. Slowly aspirate all of the supernatant and discard, leaving behind the pellet of beads.

  27. Move samples to the shaker.

  28. Add 100 µl of Elution Buffer. Pipet up and down gently 50 times to mix (set the pipette tip to 75 µl).

  29. Shake rapidly for 1-2 minutes to completely disperse the beads within the solution.

  30. Move samples to the 96-Well Magnetic Separator.

  31. Wait for 1 minute.

  32. Slowly aspirate supernatant containing the DNA to a 96 x 300 µl U-bottomed microtiter plate.

Storing DNA
Store the purified DNA at -20°C or use immediately for downstream analysis. Avoid repeatedly freezing and thawing DNA.
Quantitating DNA Yield
To quantitate yield of your DNA, use the Quant-iT™ PicoGreen® dsDNA Quantitation Kit (Catalog no. P7589).

注意事项

To maximize DNA yield, follow these recommendations when processing your samples:

  • Ensure that the robotic tips enter the wells of the plates without interfering with the pellet of beads.

  • When  removing supernatant, leave samples on the 96-Well Magnetic Separator  and aspirate slowly to ensure that the pellet of beads is not disturbed.

  • When resuspending pelleted ChargeSwitch® Magnetic Beads, make sure that all beads are fully resuspended to maximize DNA recovery.

  • To maximize DNA yield, make sure that all Wash Buffer is removed before elution.

  • To maximize DNA yield, make sure that the beads are fully resuspended during the elution step.


相关文章

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......

古DNA为揭示早期埃及人遗传多样性提供新线索

国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......

古DNA揭示埃及人祖先

在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......

这一分子工具有望成基因调控新“秘钥”

近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......

天大学者提出全新DNA存储系统

随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......

我国研发全新的DNA存储系统HELIX60MB生物医学图像存入DNA!

近日,我国科研人员在DNA存储领域取得新突破,研发了一种全新的DNA存储系统——HELIX,该系统专门用于存储生物医学数据,并成功实现了60MB的时空组学图像的存储与恢复。这一科研成果由天津大学应用数......