发布时间:2019-08-10 15:00 原文链接: BACDNA分离方法IsolationofBACDNAfromLargescaleCultures

Isolation of BAC DNA from Large-scale Cultures


Joseph Sambrook
Peter Maccallum Cancer Institute and The University of Melbourne, Australia
David W. Russell
University of Texas Southwestern Medical Center, Dallas
Excerpted From Molecular Cloning: A Laboratory Manual Third Edition

ABSTRACT
The procedure for isolation of BAC DNA is scaled up to accommodate 500-ml cultures, which, on average, yield 20-25 µg of purified BACDNA.


MATERIALS
Reagents and Solutions
  • Alkaline lysis solution I, ice coldPrepare Solution I from standard stocks in batches of approx. 100 ml, autoclave for 15 minutes at 15 psi (1.05 kg/cm2) on liquid cycle, and store at 4°C.
     

    • 50 mM glucose

    • 25 mM Tris-Cl (pH 8.0)

    • 10 mM EDTA (pH 8.0) 
       

  • Alkaline lysis solution II, freshly prepared (room temperature)Solution II should be freshly prepared and used at room temperature.
     

    • 0.2 N NaOH (freshly diluted from a 10 N stock)

    • 1% (w/v) SDS 
       

  • Alkaline lysis solution III, ice cold

    • 5 M potassium acetate, 60.0 ml

    • glacial acetic acid, 11.5 ml

    • H2O, 28.5 ml

  • Ethanol

  • Ethanol (70%)

  • Isopropanol

  • Phenol:chloroform (1:1, v/v)

  • Sodium acetate (3 M, pH 5.2)

  • STE, ice cold

    • 10 mM Tris-Cl (pH 8.0)

    • 0.1 M NaCl

    • 1 mM EDTA (pH 8.0)

  • TE (pH 8.0)

    • 100 mM Tris-Cl (desired pH)

    • 10 mM EDTA (pH 8.0)


Vectors and Hosts
  • E. coli strain carrying a recombinant BAC


Media and Antibiotics
  • LB containing 12.5 µg/ml chloramphenicol


Enzymes and Buffers
  • Lysozyme

  • Pancreative RNase (RNase A), free of DNase

  • Restriction enzymes and 10x buffers


Nucleic Acids/Oligonucleotides
  • DNA markers for pulsed-field gel electrophoresis


Gels/Loading Buffers
  • Pulsed-field gels (or 0.5% agarose gels)


Centrifuges/Rotors/Tubes
  • Sorvall SLC-1500rotor and Oak Ridge tubes (4°C)


Additional Items
  • Bacterial shaker (37°C)

  • Chromatography resin (optional; see Step 13)

  • Microfuge (4°C)

  • Sterile 17 x 100-mm tubes




METHOD
 

  1. Inoculate 500 ml of LB medium containing 12.5 µg/ml of chloramphenicol with 50 µl of a saturated overnight culture of BAC-transformed cells. Incubate the 500-ml culture for 12-16 hours at 37°C with vigorous agitation (300 cycles/minute) until the cells reach saturation. 

  2. Harvest the cells from the culture by centrifugation at 2500g (3900 rpm in a Sorvall SLC-1500 rotor) for 15 minutes at 4°C. Pour off the supernatant and invert the open centrifuge bottle to allow the last drops of the supernatant to drain away. 

  3. Resuspend the bacterial pellet in 100 ml of ice-cold STE. Collect the bacterial cells by centrifugation as described in Step 2. 

  4. Resuspend the bacterial pellet in 24 ml of alkaline lysis solution I containing DNase-free RNase (100 µg/ml). Add lysozyme to a final concentration of 1 mg/ml. 
     
    Make sure that the cells are completely resuspended and that the suspension is free of clumps.  

  5. Add 24 ml of freshly prepared alkaline lysis solution II. Close the top of the centrifuge bottle and mix the contents thoroughly by gently inverting the bottle several times. Incubate the bottle for 5 minutes on ice.
     

  6. Add 24 ml of ice-cold alkaline lysis solution III. Close the top of the centrifuge bottle and mix the contents gently but thoroughly by swirling the bottle until there are no longer two distinguishable liquid phases. Place the bottle on ice for 5 minutes.
     

  7. Centrifuge the bacterial lysate at 15,000g (9600 rpm in a Sorvall SLC-1500 rotor) for 10 minutes at 4°C. At the end of the centrifugation step, decant the clear supernatant into a polypropylene centrifuge bottle. Discard the pellet remaining in the centrifuge bottle. 

  8. Add an equal volume of phenol:chloroform. Mix the aqueous and organic phases by gently inverting the tube several times. Separate the phases by centrifugation at 3000g (4300 rpm in a Sorvall SLC-1500 rotor) for 15 minutes at room temperature. 

  9. Use a wide-bore pipette to transfer the aqueous layer to a fresh centrifuge bottle and add an equal volume of isopropanol. Invert the bottle several times to mix well. 

  10. Mark the tube on one side and place it in a centrifuge rotor with the marked side facing away from the center of the rotor. Marking in this way will aid in the subsequent identification of the nucleic acid pellet. Recover the precipitated nucleic acids by centrifugation at 15,000g (9600 rpm in a Sorvall SLC-1500 rotor) for 15 minutes at room temperature.
     

  11. Decant the supernatant carefully and invert the bottle on a paper towel to allow the last drops of supernatant to drain away. Rinse the pellet and the walls of the bottle with 20 ml of 70% ethanol at room temperature. Drain off the ethanol and place the inverted tube on a pad of paper towels for a few minutes at room temperature to allow the ethanol to evaporate. 

  12. Gently dissolve the pellet of BAC DNA in 0.2 ml of TE (pH 8.0). Assist in the dissolution of the DNA by tapping the sides of the bottle rather than vortexing. Measure the concentration of DNA by absorption spectroscopy. 

  13. Digest the BAC DNA with restriction endonucleases. 
    If the DNA preparation is resistant to cleavage, further purification by column chromatography on Qiagen resin usually eliminates the problem. 

  14. Analyze the digested BAC DNA by pulsed-field gel electrophoresis, using DNA markers of an appropriate size.


Anyone using the procedures in this protocol does so at their own risk. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in this protocol and has no liability in connection with the use of these materials. Materials used in this protocol may be considered hazardous and should be used with caution. For a full listing of cautions regarding these material, please consult:
Molecular Cloning: A Laboratory Manual Third Edition, by Joseph Sambrook and David W. Russell, © 2001 by Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p. 4.55-4.57.

Copyright © 2006 by Cold Spring Harbor Laboratory Press. All rights reserved. No part of these pages, either text or image may be used for any purpose other than personal use. Therefore, reproduction modification, storage in a retrieval system or retransmission, in any form or by any means, electronic, mechanical, or otherwise, for reasons other than personal use, is strictly prohibited without prior written permission



相关文章

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

拿破仑的军队是如何灭亡的?DNA揭示令人意外的疾病因素

1812年,法国皇帝拿破仑一世从俄罗斯莫斯科撤退时,其大部分军队因饥饿、疾病和寒冷的冬天而损失殆尽。如今,对这撤退途中丧生的30万士兵的部分遗骸的DNA的分析发现,两种未曾预料到的细菌性疾病很可能增加......

DNA揭示拿破仑军队“全军覆没”元凶

1812年夏,法兰西皇帝拿破仑·波拿巴率50万大军入侵俄罗斯帝国。然而到12月时,这支军队仅余零星残部。历史记载将此次“全军覆没”归因于饥寒交迫与斑疹伤寒。但一项新研究表示,从士兵牙齿中提取的DNA,......

“DNA花朵”微型机器人可自适应环境变化

美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......

古DNA为揭示早期埃及人遗传多样性提供新线索

国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......