发布时间:2014-06-30 15:53 原文链接: Blood:干细胞基因疗法的主要障碍得以解决

  转基因造血干细胞(HSC)移植是遗传病、HIV和癌症的一种有前景的治疗策略。然而,临床HSC基因治疗的一个障碍是,基因通过慢病毒载体(LV)传递到HSCs的效率有限。最近,科学家们解决了这个主要的障碍:如何绕过造血干细胞的自然防御系统,有效地将抗病基因插入细胞的基因组中。

  由美国斯克里普斯研究所(TSRI)副教授Bruce Torbett带领的一项最新研究报道称,药物雷帕霉素(rapamycin)——常用于减缓肿瘤生长和防止器官移植排斥反应,可使治疗剂量的基因能够传递到造血干细胞中,同时保护干细胞的功能。

  这些研究结果发表在最近出版的国际著名学术期刊《Blood》,可能为血细胞疾病带来更有效和负担得起的长期治疗方法,在这类疾病中,DNA中的突变可引起异常的细胞功能,如白血病和镰状细胞贫血。

  改进基因到造血干细胞的传递

  病毒可通过将其自身遗传物质插入到人细胞,而感染人体。然而,在基因治疗 中,科学家们开发出一种“容易消化”的病毒,如人类免疫缺陷病毒(HIV),来产生所谓的“病毒载体”。病毒载体携带治疗性基因进入细胞,而不会引起病毒 性疾病。Torbett和其他科学家发现,HIV载体可以将基因传递到造血干细胞。

  对于一种疾病(如白血病或脑白质营养不良)来说,DNA突变可导致异常的细胞功能,有效地靶定产生这些血细胞的干细胞,可能是阻止疾病和促使人体产生健康血细胞的一种成功的方法。

  Torbett指出:“当你五岁大的时候,如果在你的造血干细胞中产生一个基因修饰,这些变化是终身的。”此外,基因修饰的干细胞可以发展成多种类型的细胞,这些细胞遍布体内并提供治疗作用。

  然而,由于细胞已经适应了防御机制来克服致病病毒,所以能阻止基因工程病毒载体进行有效的基因传递。Torbett称,当科学家们从身体提取出造血 干细胞用于基因治疗时,HIV病毒载体通常将基因传递到仅30%到40%的细胞。白血病、脑白质营养不良或遗传疾病的治疗需要合理数量的干细胞来源的健康 细胞,这个数量可能太低以至于不能达到这些疾病的治疗目的。

  这些限制促使Torbett和他的研究小组,包括本文第一作者、TSRI毕业生Cathy Wang,检测雷帕霉素是否能够改善基因到造血干细胞的传递。根据其控制病毒进入和减缓细胞生长的能力,挑选雷帕霉素进行评估。

  研究人员开始先从脐带血中分离干细胞。他们将造血干细胞暴露于雷帕霉素,HIV载体被设计用于传递一个绿色荧光蛋白基因,它会引起细胞发光。这种荧光提供了一种视觉标记,可帮助研究人员跟踪基因传递。

  研究人员发现,用雷帕霉素治疗的小鼠和人干细胞之间,存在很大的差异,治疗性基因被插入到多达80%的细胞中。在这之前,研究人员从来没有将这个性能与雷帕霉素联系起来。

  帮助造血干细胞存活

  研究人员还发现,从体内取出干细胞用于基因治疗时,雷帕霉素能抑制干细胞的迅速分化。这很重要,因为科学家们需要时间来处理提取的造血干细胞,但这些细胞一旦离开人体,就开始分化成其他类型的血细胞,失去了保持干细胞并传递治疗性基因的能力。

  Torbett称:“我们想确定用于保存干细胞的条件,所以,如果我们将它们移植回我们的动物模型中,它们的行为就像最初的干细胞一样。我们发现,在两组动物模型中,干细胞可维持并产生基因修饰的细胞。”

  研究人员希望有一天这些方法在临床上是有用的。Wang称:“我们的方法可以降低成本,使基因治疗为更多的患者所用。”她说,下一步他们将在其他动 物模型中进行雷帕霉素和干细胞的临床试验,然后探讨这种方法在人类中是否是安全有效的。该小组还致力于描绘雷帕霉素方法作用于造血干细胞的双重途径。

相关文章

人类胃器官早期发育机制与体外重构研究获突破

清华大学副教授邵玥团队与合作者利用人多能干细胞,首次在体外培养出一种包含胃底和胃窦双极分布的胃器官发育模型,破解了WNT信号梯度悖论,建立了微尺度组织定向组装技术,可对类胃囊中不同谱系的组织模块独立开......

诺奖得主安医大开讲共话干细胞研究未来

“这里将百年历史积淀与现代医学教育完美融合,这种传承与创新的平衡令人印象深刻。”9月3日下午,安徽医科大学新医科中心(新校区)迎来一位国际“大咖”:诺贝尔生理学或医学奖得主、英国卡迪夫大学教授马丁·埃......

【首批阵容官宣】十年深耕,IGC广州站集结60+细胞行业顶流:干细胞、外泌体、免疫细胞三线并进,解锁千亿产业新机遇!

十年积淀,IGC2025-广州站第十届细胞及衍生物研发与产业化大会将在10月23-24日于广州再度创新启航!IGC广州站以“政策催化与技术创新,挖掘细胞产业应用多样性”为主题,从主会场与四大专场论坛出......

干细胞育出有完整血管网络的“迷你”肺

美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......

“超级再生”动物激发人类医疗灵感

在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......

仅需5天,干细胞变“救命”血管

当实验小鼠的血管受损后,科学家将仅用5天时间在实验室中培育出的微型球状人工血管植入其体内,成功恢复了受损组织的血液供应,大幅减少了组织坏死的发生。这一突破为未来治疗因事故或血栓导致的组织损伤带来了新的......

CGT新浪潮新洞见!免疫细胞/基因治疗/再生医学/干细胞最新日程发布,2025青藜风云论坛即将启幕!

......

线粒体应激调控干细胞命运的“线粒体遇见”新模式被发现

中国科学院广州生物医药与健康研究院刘兴国团队与广州医科大学应仲富团队等发现,线粒体未折叠蛋白反应(UPRmt)在多能干细胞命运中通过c-Jun调控组蛋白乙酰化,进而影响间充质-上皮转化(MET)的新模......

我国学者合作开发延缓骨骼肌衰老的基因疗法

近日,首都医科大学宣武医院衰老与再生研究中心教授王思团队联合中国科学院动物研究所研究员刘光慧、曲静团队利用灵长类骨骼肌衰老模型,首次揭示了“长寿蛋白”SIRT5通过促进蛋白激酶TBK1的去琥珀酰化修饰......

我国学者合作开发延缓骨骼肌衰老的基因疗法

近日,首都医科大学宣武医院衰老与再生研究中心教授王思团队联合中国科学院动物研究所研究员刘光慧、曲静团队利用灵长类骨骼肌衰老模型,首次揭示了“长寿蛋白”SIRT5通过促进蛋白激酶TBK1的去琥珀酰化修饰......