从受精卵到成年人,人类细胞需要经历的分裂次数可以说是天文数字。每一次分裂时,母细胞都必须将DNA精确分配给两个子细胞。而着丝粒的完整性是细胞成功分裂的关键。
着丝粒是染色体上的一个特殊DNA区域,是纺锤丝微管的附着之处,也是姐妹染色单体在分开前相互连接的地方。分离染色体的微管要识别着丝粒,需要该区域富含一种关键的蛋白——CENP-A。
在细胞进行DNA复制准备分裂的时候,需要确保新旧DNA链的着丝粒区域填充有足够的CENP-A。在此之前人们只知道着丝粒在G1期填充CENP-A,但并不了解这一过程的具体调控机制。
日前,Whitehead研究所的Iain Cheeseman和Kara McKinley鉴定了CENP-A填充着丝粒时的两个关键蛋白,它们确CENP-A积累发生在正确的时间和地点。这项研究于七月十七日发表在Cell杂志上。
在细胞为有丝分裂做准备时,DNA复制并浓缩成为配对的染色体。微管从细胞的两端伸出,附着在被称为动粒(kinetochore)的蛋白复合体上,而动粒由CENP-A分子锚定在着丝粒上。随着有丝分裂的进行,微管将染色体排列在细胞的中部,然后再将姐妹染色单体拉开。
上述过程能否顺利进行,决定着细胞的命运。着丝粒过多、过少、不完整或者定位错误,染色体都不能正确分离,而细胞会出现异常甚至死亡。
在这项研究中,McKinley发现了两种确保CENP-A正确填充的关键激酶,Plk1和CDK。这两种激酶参与了CENP-A填充的不同步骤,只有它们都正常起作用,CENP-A才能填满着丝粒中的所有空隙。McKinley不仅解析了这些激酶的作用途径,还在此基础上干扰了CENP-A的填充时机,研究显示这种干扰会引起严重的染色体分离问题。
“着丝粒的功能处于严格的控制之下,因此人们一直认为CENP-A的填充时机应该很重要。现在,我们终于证实了这一理论,”McKinley说。
“CENP-A填充是着丝粒形成的核心步骤,”Cheeseman说,他也是MIT的生物学副教授。 “这项研究揭示了这一步骤的调控基础,有助于我们深入理解细胞分裂的具体过程。”
近日,华北理工大学生命科学学院教授王希胤课题组在染色体研究中获突破。相关科研成果在《自然-协议》(NatureProtocols)发表。据介绍,染色体是执行遗传功能的关键结构与功能单元,重建祖先细胞核......
在生命的微观世界里,细胞分裂时有着严格的染色体分配原则。按照经典遗传学和细胞生物学理论,细胞有丝分裂或减数分裂后,每个子细胞核都应该至少获得完整的一套单倍体染色体,这样才能保证细胞正常发育和发挥功能。......
近日,中国科学院海洋研究所海藻种质库团队在大型海藻基因组学研究方面取得重要突破,成功构建了海带的高质量染色体水平参考基因组。该成果发表在国际期刊《科学数据》。这是该团队在海洋经济藻类基因组研究领域取得......
据最新一期《自然·通讯》杂志报道,包括澳大利亚麦考瑞大学在内的国际科学家团队,在合成生物学领域取得了重大成就,成功完成了世界上首个合成酵母基因组中最后一条染色体的创建,拼上了最后一块“拼图”。酿酒酵母......
93年前,时任红一方面军第一军团第三军军长的黄公略在江西省吉安市青原区东固畲族乡六渡坳指挥部队转移时,遭敌机袭击壮烈牺牲。近年,疑似黄公略烈士遗骸在江西省吉安市青原区东固畲族乡出土。复旦大学科技考古研......
西安交通大学叶凯教授带领信息与生物医学交叉团队,开发了针对基因组超复杂区域的计算方案,成功绘制了四种罂粟属物种的着丝粒序列图谱。7月30日,相关研究成果发表在《细胞-基因组学》上。这四种罂粟属物种包括......
6月18日,中国科学院上海免疫与感染研究所王岚峰研究组联合复旦大学陈振国课题组、美国纪念斯隆-凯特琳癌症中心赵晓岚课题组,在《自然-结构与分子生物学》(NatureStructural&Mol......
中南大学基础医学院研究员、中信湘雅生殖与遗传专科医院研究员林戈课题组的一项新研究,首次在全染色体组水平解析了非整倍体对人类早期胚胎发育的影响,为理解相关遗传问题提供了新视角。6月5日,该成果发表于《自......
美国南加州大学研究人员发明的一项突破性新技术,或将彻底改变合成生物学领域。该方法被称为克隆重编程和组装平铺天然基因组DNA(CReATiNG),为构建合成染色体提供了一种更简单且更具成本效益的方法。它......
普通小麦是主要的粮食作物之一。普通小麦的形成涉及三个祖先种的两次远缘杂交和异源多倍化过程。小麦基因组大小约16Gb,包含A、B和D三套既高度同源又有明显分化的亚基因组(其中,90%以上为重复序列)。普......