DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,从而导致遗传特征改变。这种现象会在人体内自然发生,但大部分损伤可由细胞自身修复,一旦修复失败,就可能会导致疾病,甚至癌症。
近日,发表在《PNAS》上的一项新研究中,来自印第安纳大学的一个多学科研究团队发现,染色质的移动有助于促进人类细胞核DNA损伤的有效修复,这一发现有望改善癌症的诊断和治疗。
细胞核中的DNA总是在移动而非静止的,其高级复合物(染色质)的运动在影响DNA修复方面发挥着直接作用。过去的研究表明,在酵母中,DNA损伤促进染色质移动;反过来,染色质的高流动性也有助于DNA修复。然而,在人类细胞中,这种关系更为复杂。
在这项新研究中,研究人员发现,DNA损伤部位染色质的移动速度比远离DNA损伤的染色质要快得多;而且细胞核中的染色质并不是随机移动的,而是一种连贯性的运动,DNA以一个群体的状态在短距离内移动。
他们还观察到,DNA损伤可能通过降低连贯性的方式影响DNA的群体运动。这意味着,当DNA受损时,染色质移动受到严格限制。这对于防止受损DNA接触有害因子,以及提高DNA修复的准确性和有效性非常重要。
总之,该研究揭示了染色质移动在DNA损伤反应和DNA修复中的基本作用,有助于理解人类细胞中DNA修复和癌症发生的机制。研究人员表示,这些发现也许可以作为不同药物进行癌症治疗时的反应指标。通过测试不同药物,以确定是否可以修改染色质运动来增强DNA修复。
未来,该团队希望研究单个DNA分子及其运动方式,以及个体和群体动力学如何因DNA损伤而产生不同和变化。
论文链接:
https://doi.org/10.1073/pnas.2205166119
注:此研究结果摘自《PNAS》,文章内容不代表本网站观点和立场,仅供参考。
瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......
在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......
近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......
随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......
近日,我国科研人员在DNA存储领域取得新突破,研发了一种全新的DNA存储系统——HELIX,该系统专门用于存储生物医学数据,并成功实现了60MB的时空组学图像的存储与恢复。这一科研成果由天津大学应用数......