Methylated CpG island Amplification
Protocol written by Minoru Toyota
2. Materials
2.1. MCA
Restriction enzymes SmaI, XmaI
T4 DNA ligase
Taq DNA polymerase
10X PCR reaction buffer:
670mM Tris-HCl, pH 8.8
40mM MgCl2
160 mM NH4(SO4)2
100 mM b -Mercaptoethanol
1 mg/ml bovine serum albumin.
Tris-EDTA (TE) pH 8.0
DNA precipitation reagents:
Phenol/Chloroform pH 8-9
3M NaOAc (for general precipitation)
5M NH4Oac (for precipitation and quantitation when dNTPs are present)
100% ETOH
Agarose gel electrophoresis reagents
Filter hybridization reagents:
96 pin replicator system (Nunc)
Nylon membranes
DNA hybridization solution (e.g. BLOTTO)
Random-primed DNA labeling kit
Wash solutions (Wash1 2xSSC, 0.1%SDS; Wash2 0.1XSSC, 0.1%SDS)
2.2. RDA and cloning PCR products.
3 X EE buffer : 30 mM EPPS (SIGMA) pH 8.0, 3 mM EDTA pH 8.0.
5 M NaCl
cDNA spun column (Amersham)
Mung bean nuclease (NEB)
pBluescript (Stratagene)
2.3 Oligonucleotides.
RXMA primers
RXMA24 : 5’-AGCACTCTCCAGCCTCTCACCGAC-3’
RXMA12 : 5’-CCGGGTCGGTGA-3’
JXMA24 : 5’-ACCGACGTCGACTATCCATGAACC-3’
JXMA12 : 5’-CCGGGGTTCATG-3’
NXMA24 : 5’-AGGCAACTGTGCTATCCGAGTGAC-3’
NXMA12 : 5’-CCGGGTCACTCG-3’
RMCA primers
RMCA24 : 5’-CCACCGCCATCCGAGCCTTTCTGC-3’
RMCA12 : 5’-CCGGGCAGAAAG-3’
JMCA24 : 5’-GTGAGGGTCGGATCTGGCTGGCTC-3’
JMCA12 : 5’-CCGGGAGCCAGC-3’
NMCA24 : 5’-GTTAGCGGACACAGGGCGGGTCAC-3’
NMCA12 : 5’-CCGGGTGACCCG-3’
3. Methods
3.1. Preparation of MCA amplicons
3.1.1 Digestion of genomic DNA
Digest 5 m g of genomic DNA using 100 units of SmaI over night.
Add 20 units of XmaI and incubate at 37 ° C for 6 hours.
Add one volume PC9, vortex, spin and extract the supernatant.
Precipitate the DNA: Add 1/10th volume 3M NaOAc and 2 volumes 100% ETOH. Store at –70 ° C for 1 hour and centrifuge 30 min. at >10,000 g. Pour the ETOH out, air dry the pellets.
Resuspend in 10-20 m l TE and determine DNA concentration using a spectro-photometer.
3.1.2 Ligation of adapter
Prepare an adaptor mixture by diluting the primers to 100 m M and combining 50 m l of RXma24 with 50 m l RXma12 (or RMCA24 and RMCA12).
Incubate at 65 ° C for two minutes and cool to room temperature for 30 to 60 min. This mixture can be stored at -20oC for up to 6 months.
Mix the following: 500 ng of Digested DNA, 10 m l of adaptor mixture, 400 Units of T4 DNA ligase, 3 m l of 10X ligase buffer and water to a total volume of 30 m L.
Incubate at 16 ° C for 3-16 hours.
3.1.3 PCR amplification
Prepare tubes containing 10 m l of 10 X PCR buffer, 100 pmol of RXMA24 (or RMCA24) primers, 15 Units of Taq DNA polymerase, 1.2 ml dNTP mix (25mM), 0 m l (RXMA) or 5 m l (RMCA) DMSO, H2O to a total volume of 97 m l.
Add 3 m l of ligation mixture. Cover with mineral oil.
To fill the 3’-recessed ends of the ligated fragments, incubate at 72° C for 5 min.
Perform 25 cycles of PCR (95° C for 1 min and 72° C (for RXMA24) or 77° C (for RMCA24) for 3min), with a final extension time of 10 min.
After the reaction, electrophorese 10 m l of the PCR products in a 1.5% agarose gel to check the quality of the amplification. You should see a relatively strong smear, ranging from 300 bp to 2 kb.
3.2. Detection of Aberrant Methylation by Dot blot Analysis
3.2.1 Preparation of filters
Transfer the PCR products to a new tube and add 2/3 volume of 5M NH4OAc and 350 m l of 100% ethanol.
Chill at –70 ° C for 1 hour and precipitate DNA by centrifugation. Resuspend DNA in 10-15 m l TE buffer and quantitate in a spectrophotometer.
Dilute India Black Ink by adding 20 m l to 10 ml H2O. Add 20 m l of this diluted solution to 10 ml 20xSSC.
Dilute 1 m g of MCA amplicon in TE (total volume 4 m l). Add 2 m l of the 20xSSC/India Ink solution.
Blot (in duplicate) onto nylon membranes. The easiest way to do this is to transfer the DNA mix to a 96 well plate and use a 96 pin replicator system (Nunc). Dry the membrane at RT for 30 min.
Place the filters in 0.5M NaOH/ 1.5M NaCl solution for 5 min.
Place the filters in 0.5M tris-HCl, pH 8.0 / 1.5M NaCl. Neutralize for 5 min.
Transfer the filters to 3M SSC and rinse for 5 min.
Dry the filters at RT for 1 hour.
Cross link the DNA to the filters using a UV cross linker (or bake at 80oC for 30 min.).
3.2.2 Hybridization
Prehybridize filters in a DNA prehybridization solution such as Blotto at 65° C for 3 hours.
Label 20 ng of the probe using random priming and 32P dCTP. Boil the probe, cool on ice and add to the hybridization solution.
Hybridize filters for 12-16 hours.
Wash with 2xSSC, 0.1% SDS at 65 ° C for ten min. twice, and 0.1XSSC, 0.1% SDS at 65° C 20 min.
Expose the filters to a phosphor screen (or use conventional film autoradiography).
Develop after 1-3 days exposure. See examples of results in Fig. 2.
3.3 MCA coupled with RDA
3.3.1 Outline
For detection of differentially methyl
美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......
瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......
基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......
神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......
国际知名学术期刊《自然》北京时间7月2日夜间在线发表一篇基因组学论文称,研究人员从上埃及Nuwayrat地区一个古王国墓葬中提取到一名古埃及个体的全基因组测序数据,这些数据分析可追溯至古埃及第三至第四......
在一项研究中,科学家对埃及一座墓葬中的一名古埃及人进行了全基因组测序。这些数据可追溯至古埃及第三至第四王朝,揭示了其与北非及中东地区,包括美索不达米亚古人群的亲缘关系,为早期埃及人的遗传多样性研究提供......
近年来,环状单链DNA(CssDNA)因其稳定性高、免疫原性弱、可编程性强,成为基因调控、细胞治疗等医学合成生物学领域很有潜力的分子工具之一。近期,中国科学院杭州医学研究所研究员宋杰团队针对此前开发的......
随着信息技术的飞速发展,传统存储方式已经逐渐无法满足大数据时代的需求。在此背景下,DNA信息存储技术应运而生,通过利用DNA分子存储数据,已经被视为未来大规模数据存储的潜力介质。每克DNA能够存储数百......