发布时间:2019-04-20 09:47 原文链接: E.Z.N.A.™Mollusc/ArthropodRNAProtocol

实验概要

The E.Z.N.A.® Mollusc RNA Kit is designed for efficient recovery of total RNA greater than 200 nt from molluscs, arthropods, roundworms, flatworms, and other invertebrate tissue samples rich in mucopolysaccharides. Samples are homogenized and lysed in RNA-Solv Reagent and extracted with chloroform to remove mucopolysaccharides and denature proteins. Following a rapid alcohol precipitation step, binding conditions are adjusted and RNA further purified using HiBind RNA spin columns. In this way salts, proteins and other contaminants are removed to yield high quality total RNA suitable for downstream applications such as reverse transcription, poly (A)  mRNA selection, and hybridization techniques.

主要试剂

1. Absolute (96%-100%) ethanol

2. Isopropyl alcohol (isopropanol)

3. Liquid nitrogen for freezing/disrupting samples

主要设备

1. Microcentrifuge capable of 12,000 x g

2. Nuclease-free microfuge tubes

3. Preheat an aliquot (100 ul per sample) of DEPC-treated water at 65°C

实验步骤

NOTE: Use extreme caution when handling liquid nitrogen. Use only fresh tissue to ensure RNA integrity. Samples preserved in formalin usually yield degraded RNA but may still yield adequate results for RT-PCR of target regions <500 nt.

Arthropods:

1. Pulverize no more than 50 mg of tissue in liquid nitrogen with mortar and pestle and place the powder in a clean 1.5 ml microcentrifuge tube. If ceramic mortar and pestle are not available, homogenize the sample in the microfuge tube using a disposable microtube pestle (OBI Cat# SSI-1014-39 & SSI-1015-39).Proceed to step 2 below.

Molluscs (and other soft tissued invertebrates):

1. Grind no more than 50 mg tissue in liquid nitrogen with mortar and pestle and place the powder in a clean 1.5 ml microcentrifuge tube. If ceramic mortar and pestle are not available, homogenize the sample in the microfuge tube using a disposable microtube pestle (OBI Cat# SSI-1014-39 & SSI-1015-39). Proceed to step 2 below.

Amount of starting material depends on sample and can be increased if acceptable results are obtained with the suggested 50 mg tissue. For easy to process specimens, the procedure may be scaled up and the volumes of all buffers used increased in proportion. In any event, use no more than 100 mg tissue per HiBind® spin-column as RNA binding capacity (100 ug) may be exceeded. Meanwhile, difficult tissues may require starting with less than 30 mg tissue and doubling all volumes to ensure adequate lysis.

2. Add 1 ml of RNA-Solv Reagent and vortex vigorously to make sure that all clumps are dispersed. RNA cannot be effectively extracted from clumped tissue. Incubate at room temperature for 2-3 minutes.

3. Add 0.2 mL of chloroform per 1 mL of RNA-Solv Reagent. Cap sample tubes securely and shake vigorously for 15 seconds. Incubate at room temperature for 3 minutes.

4. Centrifuge at 12,000 x g for 15 minutes at 4°C. The mixture separates into a lower phenol-chloroform phase, an interphase, and an upper aqueous phase. RNA remains entirely in the aqueous phase.

5. Transfer no more than 80% of the aqueous phase to a fresh tube. Add one volume of isopropanol and mix to precipitate RNA. Incubate at room tempature for 10 min and centrifuge 12,000 x g for 3 min at 4°C. Carefully discard as much supernatant as possible without disturbing RNA pellet. Invert the microfuge tube on a paper towel for 1 min to allow residual liquid to drain; it is not necessary to dry the pellet.

6. Add 100 ul of sterile DEPC-treated water and vortex to resuspend the pellet. A brief incubation at 65oC may be necessary to effectively dissolve the RNA. Note: All of the centrifugation step below should be carried out at room temperature.

7. Adjust binding condition: Add 350ul Buffer RB/2-mercaptoethanol followed by 250 ul absolute ethanol and vortex to mix. If RB buffer is used in step to dissolve the RNA pellet, add 350ul of 70% ethanol. Vortex to mix.

Note: RB buffer recommended at this step to avoid RNA degradation. Add 20 ul 2-mercaptoethanol per 1 ml of Buffer RB before use. This mixture can be made and stored at room temperature for 1 week.

8. Apply entire mixture, including any precipitation that may have formed, to an HiBind® RNA column assembled in a 2 ml collecting tube (supplied). Centrifuge .10,000 x g for 30 sec at room temperature. Discard flow-through liquid and reuse collecting tube in next step.

9. Add 500 ul RNA Wash Buffer I and centrifuge at 10,000 x g for 30 sec. Discard both flow-through liquid and collecting tube.

Optional on-membrane DNase I digestion: This is the starting point to perform DNase I digestion. See Page 7 for detailed protocol.

10. Place column in a clean 2ml collection tube (supplied), and add 400 ul Wash Buffer II diluted with ethanol. Centrifuge at 10,000 x g for 30 sec at room temperature and discard flow-through. Reuse the collection tube in step.

Note: Wash Buffer II Concentrate must be diluted with absolute ethanol before use. Refer to label on bottle for directions.

11. Wash column with a second 400 ul of Wash Buffer II as in step 10. Centrifuge and discard flow-through. Then with the collection tube empty, centrifuge the spin cartridge for 2 min at full speed to completely dry the HiBind™ matrix.

12. Elution of RNA. Transfer the column to a clean 1.5 ml microfuge tube (not supplied with kit) and elute the RNA with 30-50 ul of DEPC-treated water (supplied with kit). Make sure to add water directly onto column matrix. Centrifuge 1 min at maximum speed. A second elution into the same tube may be necessary if the expected yield of RNA >50 ug. To maintain a high RNA concentration, use the first eluate for the second elution.

Note: RNA may be eluted with a greater volume of water. While additional elutions increase total RNA yield, the concentration will be lowered since more than 80% of RNA is recovered with the first elution.


相关文章

18亿美元合作罗氏与Ascidian共同开发RNA外显子编辑疗法

6月18日,AscidianTherapeutics宣布与罗氏(Roche)达成一项总额高达约18亿美元的研究合作与许可协议,将共同发现和开发针对神经系统疾病的RNA外显子编辑疗法。根据协议,Asci......

联合团队解析荧光RNA同染料识别和发色机制

华东理工大学药学院、生物反应器工程国家重点实验室、光遗传学与合成生物学交叉学科研究中心教授杨弋、朱麟勇,浙江大学生命科学研究院研究员任艾明课题组联合,在荧光RNA研究中取得新进展,为进一步理解和探索荧......

美国科学家呼吁扩大RNA研究

RNA(核糖核酸)研究长期处于DNA(脱氧核糖核酸)研究的“阴影”之下。如今,科学家强烈要求大力推动RNA研究。RNA具有许多不同的形状和功能。图片来源:DARRYLLEJA据《科学》报道,5月30日......

PNAS:清华大学程功团队发现一种进化保守机制促进蚊媒病毒感染与传播

以登革病毒、寨卡病毒、乙型脑炎病毒为代表的黄病毒(Flavivirus)由蚊虫携带并传播,每年导致数亿人感染、数十万人死亡,引起严重的公共健康问题。 蚊媒黄病毒的基因组均为单链正向RNA,其......

陈玲玲:杰青项目给我“独辟蹊径”的勇气和胆识

在对生命之谜的探索中,一种不参与编码蛋白质的非编码核糖核酸(RNA)走进了科学家的视野。令人惊讶的是,在全部RNA中,非编码RNA的占比竟然达到了98%。它如同宇宙中神秘的“暗物质”,在幕后调控着各类......

RNA编辑疗法加速发展

RNA编辑技术通过改变RNA序列来“补偿”有害的突变,使正常蛋白得以合成。RNA编辑也可增加有益蛋白的产生。与CRISPR基因组编辑不同,RNA编辑不会改变基因,也不会产生永久性的变化。图片来源:视觉......

研究揭示水稻RNA识别结构域蛋白抑制外源基因沉默的机制

植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......

PNAS|2024年张锋团队迎来首篇重要研究成果

博德研究所张锋团队在PNAS 在线发表题为“HumanparaneoplasticantigenMa2(PNMA2)formsicosahedralcapsidsthatcanbeengin......

新药获批上市,阿尔茨海默病离“治愈”还有多远?

今年1月9日,我国继美国、日本之后,正式批准治疗阿尔茨海默病的新药仑卡奈单抗上市。这款药曾被美国《科学》杂志列为2023年度十大科学突破之一。如何攻克阿尔茨海默病一直是医学界的重要课题。据世界卫生组织......

多功能植物小RNA分析工具|一站式小RNA分析及可视化

日,《科学通报》在线发表了华南农业大学园艺学院教授夏瑞团队最新研究成果,他们研究开发出一款多功能植物小RNA分析工具——sRNAminer,可便于研究人员进行一站式小RNA分析及可视化。据介绍,植物小......