LB broth + selective marker
50% sterile glycerol
TEG
(25mM Tris-Cl, 10mM EDTA, 50mM dextrose)
20 mg/ml lysozyme
10% SDS
4M NaOH
autoclaved water
Solution 3
(3M potassium-acetate, 2M acetic acid -- glacial is 17M)
isopropanol
70% ethanol
TE buffer
5M LiCl
1 mg/ml RNaseA
phenol: chloroform: isoamyl alcohol
(25:24:1)
chloroform: isoamyl alcohol
(24:1)
straight ethanol
3M sodium acetate
a single colony of E. coli
Incubator
Centrifuge
Eppendorf tubes
Oakridge tubes
Inoculate 50 ml LB broth + selective marker with a single colony of E. coli and incubate with shaking for 12 hrs(overnight) at 37°C.
Measure out 850 µl of culture into Eppendorf tube (1).
Add 150 µl of 50% sterile glycerol.
Store at -80°C.
Measure out 850 µl of culture into Eppendorf tube (2).
Add 150 µl of 50% sterile glycerol.
Store at -80°C.
Measure out as much culture as will fit into Oakridge tube (1).
Centrifuge at a speed of 5800 Xg for 10 mins at 4°C, gently aspirate out the supernatant and discard it.
Add rest of the culture to pellet.
Centrifuge at a speed of 5800 Xg for 10 mins at 4°C, gently aspirate out the supernatant and discard it.
Add 1 ml of TEG.
Resuspend pellet by vortexing/by shaking vigorously.
Add 111 µl of 20 mg/ml lysozyme.
Incubate on ice for 30 mins.
Meanwhile:
Measure out 250 µl of 10% SDS into Eppendorf tube (3).
Add 125 µl of 4M NaOH.
Add 2.125 ml of autoclaved water.
Vortex the mixture for a few secs.
Measure out 2 ml of SDS/NaOH mix into Oakridge tube (1).
Incubate on ice for 10 mins.
Add 1.5 ml of Solution 3.
Incubate on ice for 10 mins.
Vortex the mixture for a few secs.
Centrifuge at a speed of 17200 Xg for 15 mins at 4°C and aspirate out the top layer.
Transfer top aqueous layer into Oakridge tube (2).
Discard bottom layer.
Measure out 2.7 ml of isopropanol into Oakridge tube (2).
Centrifuge at a speed of 17200 Xg for 10 mins at room temperature, gently aspirate out the supernatant and discard it.
Add 1 ml of 70% ethanol.
Vortex the mixture for a few secs.
Centrifuge at a speed of 17200 Xg for 10 mins at room temperature, gently aspirate out the supernatant and discard it.
Dry the pellet in air for 2 - 5 mins.
Add 500 µl of TE buffer.
Resuspend pellet by vortexing/by shaking vigorously.
Add 500 µl of 5M LiCl.
Incubate on ice for 5 mins.
Centrifuge at a speed of 17200 Xg for 10 mins at room temperature and aspirate out the top layer.
Transfer top aqueous layer into Eppendorf tube (4).
Discard bottom layer.
Measure out 1 ml of isopropanol into Eppendorf tube (4).
Incubate at room temperature for 10 mins.
Centrifuge at a speed of 17200 Xg for 10 mins at room temperature, gently aspirate out the supernatant and discard it.
Add 100 µl of 70% ethanol.
Vortex the mixture for a few secs.
Centrifuge at a speed of 17200 Xg for 10 mins at room temperature, gently aspirate out the supernatant and discard it.
Add 375 µl of TE buffer.
Resuspend pellet by vortexing/by shaking vigorously.
Add 7.5 µl of 1 mg/ml RNaseA.
Incubate at 37°C for 30 mins.
Add 700 µl of phenol: chloroform: isoamyl alcohol.
Vortex the mixture for a few secs.
The solution should be thoroughly mixed.
Centrifuge at maximum speed for 2 mins at room temperature and aspirate out the top layer.
Transfer top aqueous layer into Eppendorf tube (5).
Discard bottom layer.
Repeat protocol from Step 14.
Repeat until the interface between the phases is clear after centrifugation.
Measure out 700 µl of chloroform: isoamyl alcohol into Eppendorf tube (5).
Vortex the mixture for a few secs.
The solution should be thoroughly mixed.
Centrifuge at maximum speed for 2 mins at room temperature and aspirate out the top layer.
Transfer top aqueous layer into Eppendorf tube (6).
Discard bottom layer.
Repeat Step 16.
This removes phenol.
Measure out 750 µl of straight ethanol into Eppendorf tube (6).
Add 125 µl of 3M sodium acetate.
Option 1: Store at -80°C for 30 mins.
(or)
Option 2: Store at -20°C for 12 hrs(overnight).
Centrifuge at a speed of 13600 Xg for 15 mins at 4°C, gently aspirate out the supernatant and discard it.
Add ~100 µl of 70% ethanol.
Vortex the mixture for a few secs.
Centrifuge at a speed of 13600 Xg for 5 mins at 4°C, gently aspirate out the supernatant and discard it.
Add 100 - 200 µl of TE buffer.
Resuspend pellet by vortexing/by shaking vigorously.
TOTAL TIME REQUIRED FOR THE COMPLETION OF THE PROTOCOL :~ 15 hrs, 44 mins
真菌感染会对人类、动物和植物构成威胁,甚至带来严重后果。来自德国杜塞尔多夫海因里希-海涅大学(HHU)等机构的科学家,在一项最新研究中,阐明了真菌感染的一个重要分子机制。这一研究有望促进新型抗真菌药物......
细胞外基质(ECM)刚性是影响多种生物过程的重要机械线索。然而,对刚性传感的分子机制的理解受到当前细胞力测量技术的空间分辨率和力灵敏度的限制。2023年10月5日,武汉大学刘郑团队在NatureMet......
RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译......
英国帝国理工学院的科学家与牛津纳米孔技术公司合作研制出一种新方法,可同时分析数十种不同类型的生物标志物,改变了对心脏病和癌症等疾病的检测,从而让临床医生收集到有关患者疾病的更多信息。研究成果25日发表......
体细胞突变是肿瘤发生的标志,可用于癌症的无创诊断。美国约翰·霍普金斯大学医学院绘制细胞游离DNA单分子全基因组突变图谱,用于癌症无创检测。该研究成果于近日发表在《NatureGenetics》杂志上,......
人们应用合成生物学手段已开发出精密的细胞生物传感器,可用于检测人类疾病。然而,生物传感器尚未被设计用于检测特定的细胞游离DNA序列和突变。美国加州大学圣迭戈分校等机构合作开发一种工程化细菌,可检测活体......
近日,中国农业科学院深圳农业基因组研究所农业基因组学技术研发与应用创新团队提出DNA数字存储纠错新算法,成功突破了冗余对纠错能力的限制,将大幅提升DNA存储纠错能力。相关研究成果发表在《国家科学评论》......
生物多样性丧失是三大环境危机之一。昆虫作为庞大且多样化的生物群体,几乎占据各种类型栖息地,在生态系统中扮演着重要角色。“SITE-100”国际大科学计划是中国科学院动物研究所研究员白明与英国自然博物馆......
上海交通大学化学化工学院/变革性分子前沿科学中心樊春海院士与王飞副教授近期发展了一种支持通用性数字计算的DNA可编程门阵列(DNA-basedprogrammablegatearray,DPGA),可......
美国西弗吉尼亚大学研究人员实现了在原子水平上观察合成DNA,从而了解了如何改变其结构以增强其剪刀功能。更多地了解这些合成DNA反应,或是未来解锁医学新技术的关键。研究结果发表在最近出版的《自然》子刊《......