长期以来,分子生物学家一直认为,基因组的3D结构域能够控制基因的表达方式,当在果蝇中研究了高度重排的染色体后,欧洲分子生物学实验室的科学家们通过研究揭示了在某些基因中发现的一些情况,研究人员阐明了3-D基因组结构(染色体拓扑学结构)和基因表达之间的解偶联机制,相关研究刊登于国际杂志Nature Genetics上。
图片来源:Beata Edyta Mierzwa in collaboration with EMBL
我们的染色体能被分为多个结构域,控制基因表达的DNA调节性区域(增强子)通常会与其靶点基因一起位于某些染色质的结构域(拓扑相关结构域)中;截至目前为止,有很多有趣的例子,有些结构域会将增强子的活性限制在结构域中的某些基因中。这项研究中,研究人员通过联合研究发现,染色质结构域的改变或许并不能预测基因表达的改变,这就意味着,除了结构域之外,肯定还存在某种机制能够控制增强子和其靶点基因之间相互作用的特异性。
研究者Eileen Furlong表示,本文研究结果对当前科学家们普遍的认知提出了一定的质疑,即染色质结构域(TADs,chromatin domains)或能约束和限制增强子的功能;研究者发现,基因组3-D组织的主要改变或许对大部分基因表达的影响微乎其微,至少在生物学背景下是这样的,研究结果表明,当某些基因的表达被影响时,许多基因似乎会对染色质结构域的重排产生抗性,而仅有一小部分基因对染色质拓扑学结构的改变会变得非常敏感。
本文研究结果还在染色质拓扑学研究领域提出了许多非常有趣的问题,比如,还有哪些机制能够控制增强子和其靶点基因之间的相互作用?许多增强子看起来并不混杂,其并不会与任何靶点基因相互关联,而其有更为喜欢的“伴侣”;后期研究人员将会利用遗传学、光遗传学和单细胞研究技术深入分析,这或许有望帮助研究人员在正反两面阐明染色质拓扑学结构的多种影响。
最近几年,每隔一段时间,张冲就会发一个朋友圈,配文为“这一秒钟科学不重要”。配图则为一篇新上线论文截图,她和丈夫薛瑞栋的名字赫然在列。今年情人节,这个系列的朋友圈再次“更新”。此次的配图为一篇Natu......
近日,中国科学院海洋研究所藻类生理过程与精准分子育种团队与合作者利用精准基因编辑技术揭示了海洋硅藻对种群密度信号的感知和传递机制。研究成果发表在《国际微生物生态学学会杂志》上。陆地和海洋中的动物会通过......
近日,中国工程院院士、南方海洋科学与工程广东省实验室(广州)教授包振民团队开发国际首个整合宏观/微观进化基因组和功能基因组的综合分析工具(PanSyn,https://github.com/yhw32......
植物是复杂的生物系统。植物体内基因的表达受到多种水平的调控,如转录水平、转录后水平、DNA甲基化/去甲基化等,从而对基因表达进行精密高效的调控。中国科学院遗传与发育生物学研究所张劲松研究组筛选OsEI......
神经变性疾病早期阶段的特征是离散脑细胞群中蛋白质的积累以及这些脑细胞的退化,对于大多数疾病而言,这种选择性的易感性模式是无法解释的,但其对于病理性机制或许能提供重要的见解。阿尔兹海默病是世界上主要的痴......
行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;......
长期以来,人们普遍认为,脱氧核糖核酸(DNA)决定了生物体的全部表型。但问题来了,在相同环境中成长的同卵双胞胎,身高、肤色、性格、健康状况等并非完全相同,这是为什么?为了揭开表观遗传的“神秘面纱”,科......
纽约大学格罗斯曼医学院(NYUGrossmanSchoolofMedicine)的研究人员进行的一项新研究表明,我们远古祖先的基因变化可以部分解释为什么人类不像猴子那样有尾巴。这项研究成果最近发表在《......
猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......
意大利科学家在一项小鼠研究中展示了无需永久性基因组编辑,也可对一个控制胆固醇水平的基因做到长效抑制。这一靶向表观遗传沉默(不用直接改变DNA序列就可改变基因功能)的效果在小鼠中持续近1年,令循环胆固醇......