发布时间:2019-07-29 15:40 原文链接: NatMethods:利用光线按需定制基因组折叠

  你体内的每个细胞都有你的一个紧密缠绕并装入在细胞核中的基因组拷贝。由于每个基因组拷贝实际上是相同的,不同细胞类型及其生物学功能之间的差异可归结为基因组中哪些基因发生表达,基因的表达方式和时间。

  科学家越来越了解基因组折叠在这一过程中所起的作用。线性基因序列被包装到细胞核中的方式决定了哪些基因彼此发生物理接触,这接着影响基因表达。

  美国宾夕法尼亚大学生物工程系助理教授Jennifer Phillips-Cremins是“三维表观遗传学(3-D Epigenetics)”领域的先驱。如今,在一项新的研究中,她和她的同事们展示了一种新技术 ,它可以根据需要快速地利用光作为触发器快速地创建特定的基因组折叠模式。这种称为光激活动态环状结构化(light-activated dynamic looping, LADL)的技术将另外两种强大的生物技术工具  ---CRISPR/Cas9和光遗传学---结合在一起。通过使用CRISPR/Cas9靶向特定基因组褶皱(genome fold)或者说环状结构(loop)的末端,然后使用光遗传学将这些末端像磁铁一样连接在一起,这些研究人员能够在几小时内在精确的基因组区段之间暂时地创建新的环状结构。相关研究结果发表在2019年7月的Nature Methods期刊上,论文标题为“LADL: light-activated dynamic looping for endogenous gene expression control”。

  在如此短的时间内形成基因组中的环状结构和撤消它们的能力使得LADL成为一种更详细研究三维表观遗传机制的有前景的工具。鉴于Phillips-Cremins实验室之前的研究提示着这些机制参与各种 神经发育疾病,他们希望LADL最终在未来研究中,甚至在开发治疗方法中发挥着作用。

  Phillips-Cremins说道,“近年来,在我们这个领域的科学家们克服了技术和实验方面的挑战,构建出超高分辨率的DNA图谱,这些DNA图谱揭示了DNA在细胞核中如何折叠成复杂的三维模式。 尽管我们如今能够可视化观察诸如环状结构之类的拓扑结构,但是在基因组结构配置如何促进基因组功能方面仍然存在着重要的知识缺口。”

  为了开展这方面的实验,研究这些三维模式的科学家们需要使用能够根据接收到的指令操纵特定环状结构的工具。除了内在的物理挑战---让线性基因组中的两个距离较远部分进行物理接触, 就像使用只有几个原子厚度的线穿针一样---之外,这种技术应当是快速的、可逆的,而且能够在靶区域上发挥作用,同时确保对相邻序列的干扰最小化。

  CRISPR/Cas9的出现解决了靶向问题。对这种基因编辑工具的改进允许科学家们在他们想要形成的环状结构的任一端靶向所需的DNA序列。如果这些序列可以被设计成在其他的必要条件下寻找彼此并结合在一起,那么就可根据需要形成环状结构。

  这些研究人员随后寻找能够将这些环状结构的末端结合在一起的生物机制,并在光遗传学工具包中找到了一种理想的生物学工具。在开花植物拟南芥中发现的蛋白CIB1和CRY2当暴露于蓝光时 会彼此结合在一起。

  论文共同第一作者Mayuri Rege说道,“一旦我们打开蓝灯,它们就会在几毫秒内开始发挥作用,并且在4小时内形成环状结构。当我们关闭蓝灯时,这些蛋白就解离,这意味着我们期待所形 成的环状结构会瓦解掉。”

  论文共同第一作者Ji Hun Kim说道,“细胞中形成了数以万计的DNA环状结构。有些环状结构是慢慢形成的,但是也有很多环状结构是在一秒内快速形成的。如果我们想要研究这些环状结构快 速形成的机制,我们需要能够在可比的时间尺度上发挥作用的工具。”

  快速发挥作用的折叠机制还具有以下优点:它们导致周围基因组区域发生较少的扰动,这有潜力降低为实验结果增加噪声的非预期效应。

  这些研究人员使用了他们的高分辨率三维基因组图谱技术测试了利用LADL构建所需的环状结构的能力。在测量转录RNA序列活性的专家Arjun Raj的帮助下,他们还能够证实新形成的环状结构正在影响基因表达。

  三维表观遗传学领域的前景是研究这些长程环状结构和决定它们编码的蛋白的时间安排和数量的机制之间的关系。能够设计这些环状结构意味着科学家们将能够在实验条件下模拟这些机制, 这就让LADL成为研究基因组折叠在各种疾病中的作用的重要工具。

  Phillips-Cremins说道,“在短时间尺度上理解基因组结构-功能关系至关重要,这是因为基因表达的时空调控对于忠实的人类发育至关重要,以及基因的错误表达经常在人类疾病中发生。利 用光对基因组拓扑结构进行改造为理解这种关联性的因果关系开辟了新的可能性。此外,我们预计,从长远来看,光的使用将允许我们能够靶向特定的人体组织,甚至控制在大脑特定神经元亚型中的环状结构形成。”

相关文章

高起点!又一所新大学,来了!

 8月26日,西交利物浦大学与扬州市江都区人民政府、光线传媒签署战略合作框架协议,各方将合作探索融合式教育,正式启动西浦·光线电影学院的建设。三方在投资、建设、运营等方面进行全方位的合作,共......

动物的行为策略帮你暗中视物

哺乳动物如何感知昼夜间光的变化?芬兰阿尔托大学和赫尔辛基大学研究人员在夜间进行实验发现,与白天进行的实验相比,老鼠在漆黑的环境中更容易找到微弱的光线。图片来源于网络科学家惊讶地发现,这种效应与眼睛本身......

NatMethods:利用光线按需定制基因组折叠

你体内的每个细胞都有你的一个紧密缠绕并装入在细胞核中的基因组拷贝。由于每个基因组拷贝实际上是相同的,不同细胞类型及其生物学功能之间的差异可归结为基因组中哪些基因发生表达,基因的表达方式和时间。科学家越......

NatMethods:利用光线按需定制基因组折叠

你体内的每个细胞都有你的一个紧密缠绕并装入在细胞核中的基因组拷贝。由于每个基因组拷贝实际上是相同的,不同细胞类型及其生物学功能之间的差异可归结为基因组中哪些基因发生表达,基因的表达方式和时间。科学家越......

睡眠中人造光线越强越容易发胖

“人类生来就更适应昼夜分明的自然环境。”听过熬夜让人胖,压力催人肥,但你有想过,即便好好睡觉、睡着了也可能会发胖吗?这似乎不科学?来自美国国立卫生研究院(NIH)的一项大型研究就首次发现,夜间睡眠环境......

新技术让光线“改头换面”

记者从南开大学获悉,日前,该校物理科学学院金亮副教授与宋智教授合作,利用单向破坏性干涉展现出的独特非对称性,首次让光线行为“改头换面”,实现了不依赖入射方向的光波传播以及单向激光发射。相关研究论文发表......

超黑变色材料可将光线变成任何颜色

它是地球上最黑的物质之一,却能将光转变成你想要的任何颜色。这种变色材料易于制造,或许有一天可增强太阳能发电能力。黑度的全球纪录由一种碳纳米管制成的材料持有。当被分层堆积到1毫米厚时,这种材料能吸收99......

纳米放大镜可将光线放大一万倍有望提升弱光拍摄性能

科技日报北京7月15日电(记者王小龙)美国威斯康星大学麦迪逊分校的科学家日前开发出一种能将光线放大一万倍的光学设备。让人称奇的是,这种神奇的“放大镜”只有几纳米大。研究人员称,该研究有望大幅提升相机弱......

科学家首次拍摄到同时以波和粒子形式存在的光线照片

瑞士联邦理工学院的科学家首次拍摄的同时以波和粒子形式存在的光线照片,证明了爱因斯坦的理论,即光线这种电磁辐射同时表现出波和粒子的特性。照片中,底部的切片状景象展示了光线的粒子特性,顶部的景象展示了光线......

Nature子刊发布光诱导CRISPR新技术

杜克大学的研究人员设计出了一种方法,通过结合一种细菌的病毒防御系统及花对于阳光的反应,只需拨动光开关就可以在实验室培养皿中以任何模式在任何的特异位点激活基因。能够利用光在特异的位点激活基因,研究人员可......