发布时间:2015-07-16 13:10 原文链接: Nature医学:干细胞治疗获得新突破

  生物通报道:包括肺气肿、支气管炎、哮喘和囊性纤维化在内的呼吸道疾病是全世界第二大死因,仅在美国就有三千五百万人受到慢性呼吸道疾病的困扰。然而修复肺部损伤一直是医疗上的一大难题。

  Weizmann研究所的科学家们用胚胎干细胞成功修复了小鼠受损的肺部组织,这一策略有望成为治疗人类患者的新途径。这一成果发表在七月十四日的Nature Medicine杂志上。

  干细胞能够分化成为机体内任何类型的细胞,可用于补充和更新在疾病中受损的细胞,因此用干细胞治疗许多人视为下一次医疗革命。人体器官的干细胞并非分散在组织中,而是集中在特殊的“巢穴”里,干细胞巢含有干细胞所需的所有给养。肺部的正常干细胞与骨髓干细胞高度相似,“这说明我们可以像骨髓移植那样修复肺部组织,”Weizmann研究所的Yair Reisner教授说。

  骨髓移植主要依赖两点:干细胞有能力通过血液到达正确的干细胞巢,可以认为清理干细胞巢为移植细胞腾出空间。Reisner等人认为,这一策略同样适用于肺部修复。不过,他们首先需要找到足够移植的肺干细胞,因为这样的细胞非常少。(延伸阅读:eLife突破性成果:干细胞生成首个肺部类器官)

  研究人员发现,胚胎发育20–22周是收获胚胎肺细胞的最佳时机,在此之前细胞还没有分化好,在此之后细胞的再生能力比较减弱。随后他们想办法清空肺部的干细胞巢,将新的肺干细胞注入肺部受损的小鼠体内。

  研究显示,胚胎肺干细胞能够通过血液到达肺部,成功进入正确的干细胞巢。这些细胞在六周内分化成了正常的肺部组织,使小鼠的肺部损伤得到恢复,呼吸情况显著改善。

  下一步,Reisner打算确定正确的药物剂量,以防止机体排斥移植的细胞。“我们希望建立一个细胞库,帮助人们修复严重呼吸道疾病所造成的损失,”Reisner说。

相关文章

1亿人被改写命运!首个膝骨关节干细胞药物进入III期临床

西比曼生物科技(Ce­l­l­u­l­arBi­o­m­e­d­i­c­i­neGr­o­up,CB­MG)近日正式宣布,启动公司旗下异体人源脂肪间充质祖细胞注射液Al­l­o­J­o­in®的III......

干细胞治疗帕金森病迈出重要一步

中国科学院脑科学与智能技术卓越创新中心高级研究员陈跃军团队创建了一种“能够跨分化阶段和时间点的高通量谱系示踪”新技术,解析了大脑内多巴胺能神经细胞分化过程,发现和鉴定了一种可特异性表征多巴胺能神经前体......

发现干细胞清理蛋白质垃圾的特殊机制

蛋白质稳态(proteostasis)是指细胞内蛋白质的合成、折叠、修复、降解和运输等过程的平衡状态,保证细胞内蛋白质的数量、构象和功能处于稳定的状态。蛋白质稳态对于维持细胞的正常功能、细胞增殖和生存......

“纽约病人”证明脐带血干细胞或能治愈艾滋病

科学家说,一种治疗艾滋病病毒(HIV)的新方法——从脐带血中移植抗HIV的干细胞——已经取得了长期成功的结果。这种方法成功地用于治疗“纽约病人”,一名患有白血病和携带HIV的自认为是混血儿的中年妇女,......

雄性小鼠干细胞转化功能性卵细胞可产生后代

国际著名学术期刊《自然》最新发表的一篇干细胞研究论文称,研究人员发现一种将雄性(XY)小鼠干细胞转化为雌性(XX)细胞并产生功能性卵细胞的方法,这些卵细胞在受精后得到的胚胎中约有1%能产生健康的后代。......

Cell:科学家揭示人造血干细胞对铁死亡的敏感性

造血干细胞(HSC)是体内造血系统维持的关键,具有一些独特的生理适应性,如高水平的蛋白质合成率。然而,这种适应性相关的机制及影响仍有待研究。美国哈佛大学研究团队揭示人造血干细胞对铁死亡的敏感性。该研究......

昆明动物所阐明多能干细胞基因组稳态维持新机理

多能干细胞(Pluripotentstemcells,PSCs)因在体外具无限增殖和分化为不同类型细胞的潜能,在再生医学领域中颇具应用前景,也成为目前临床上最具潜能的成药细胞。PSCs制备过程中的标准......

研究人员使用3D打印和干细胞制造眼组织

近日,美国国家卫生研究院下属国家眼科研究所的研究团队利用患者干细胞和3D生物打印技术制造出了可支持视网膜感光的眼组织。这一技术为研究老年性黄斑变性等退行性眼病的发病机制提供了模型,将促进人们对致盲疾病......

全球首例!干细胞注射成功治疗先天性心脏病已存活2年

根据疾病控制和预防中心的数据,先天性心脏缺陷是最常见的婴幼儿出生缺陷疾病。近年来,研究人员已经开始尝试使用人工材料修复患者的心脏。然而,普通的人工材料无法伴随患者成长,需要重复手术。现在,研究人员正在......

干细胞结合3D生物打印造出眼部组织

美国国家卫生研究院下属国家眼科研究所(NEI)研究人员使用患者干细胞和3D生物打印技术,打印出一种支持视网膜感光的光感受器的眼组织——外层血—视网膜屏障的细胞组合。这一成果为研究老年性黄斑变性(AMD......