发布时间:2019-12-23 17:13 原文链接: Nature子刊:这种抗生素消灭超级细菌避免耐药性

  抗生素耐药性正日益成为影响全球人口健康的巨大威胁。有调查预测,如果这个问题得不到有效遏制,到2050年将有累计3亿人死于抗生素耐药,这比癌症死亡更可怕。

  然而由于存在科学障碍以及投资回报降低等因素,抗生素的研发进展非常缓慢,远远跟不上抗生素耐药发展的步伐,因此,对不会直接导致耐药性的新型抗感染药物的需求变得前所未有的迫切。

  近日,来自慕尼黑工业大学和Helmholtz感染研究中心的科学家们通过对一种已批准上市的抗癌药物进行化学修饰,获得了一种对多重耐药菌,包括超级细菌中的耐甲氧西林金黄色葡萄球菌(MRSA)和抗万古霉素肠球菌(VRE)有效的新型抗生素PK150。实验表明,PK150能显著降低小鼠血流感染模型中的细菌负荷,且不会诱导实验室培养的细菌产生耐药性。相关研究成果于12月16日发表在 Nature Chemistry 上。

image.png

  目前对细菌感染的治疗受到了多重耐药菌急剧增加的挑战。除了革兰氏阴性多重耐药菌引起的感染外,革兰氏阳性菌,如金黄色葡萄球菌(尤其是MRSA,对多种抗生素耐药),仍然是医疗相关感染的首要原因之一,在药物开发中具有高度优先地位。

  几乎所有上市的抗生素都靶向细菌细胞壁生物合成、膜完整性、DNA合成或蛋白质生物合成,但细菌已经发展出一系列的耐药机制,几乎可以阻挠每一种药物的研发。而测试已被批准用于其他适应症的药物是否具有潜在抗菌作用,是开发新型抗菌药物的一个有希望的策略。

  领导该研究的 Stephan A. Sieber 博士表示:“我们的研究重点是一类叫做激酶的人体蛋白质,它有许多商用抑制剂可供筛选研究。针对关键的细菌激酶的药物开发仍处于初级阶段,大量原本用于抗癌的激酶抑制剂正等待进行细菌测试。”

image.png

Stephan A. Sieber博士(图片来源:慕尼黑工业大学官网)

  在筛选了232种商用激酶抑制剂后,Sieber团队最终确定将索拉非尼作为研究对象。索拉非尼是一种已上市的新型多靶向性抗癌药,也是多种激酶抑制剂,先前有研究表明其对 MRSA有效。

  为了达到更强大的抗菌效果,研究人员对索拉非尼分子进行了化学修饰。在几十个合成分子中,PK150被发现对 MRSA的疗效是索拉非尼本身的10倍。而且,与索拉非尼不同,PK150还可以杀死对万古霉素耐药的超级细菌VRE(目前对其有效的抗生素很少)。此外,与万古霉素或利奈唑胺相比,新的分子结构对金黄色葡萄球菌更有效,在PK150治疗24小时后细菌生物膜减少了80%。

  文章的作者之一Dietmar Pieper博士对此感叹道:“MRSA感染通常是慢性的,因为细菌可能会休眠。而PK150甚至可以杀死这类细菌以及被生物膜保护的细菌。”

  对PK150的进一步研究虽然没有确定任何已知激酶作为新药靶点,但证明了在许多潜在靶点中,PK150干扰了细菌甲萘醌(对细菌呼吸和能量代谢至关重要)的合成,使其蛋白质(包括自溶素)分泌失调,影响细胞壁生物合成,最终导致细胞破裂。与其他干扰细胞壁形成的抗生素(如青霉素、甲氧西林)相比,这一作用是间接的。

  Sieber强调:“由于分子的化学改变,PK150不再与人类激酶结合,而是特异性地针对细菌的靶点。”

  小鼠血流感染模型实验显示,接受PK150治疗的小鼠肝脏和心脏中的甲氧西林敏感金黄色葡萄球菌(MSSA)减少了大约100倍。此外,与市场上的以左氧氟沙星(LVX)为基准对照的抗生素相比,PK150不仅具有同等效力,而且显示出长达两天的便利给药间隔和良好的生物利用度。

  在耐药性方面,PK150也有绝佳表现。虽然葡萄球菌会迅速对其他抗生素产生耐药性,但研究人员没有在实验室培养的细菌中发现对PK150的任何耐药性。对照组抗生素氧氟沙星(OFL)和索拉非尼(SFN)在几次传代后抗菌活性迅速下降,但PK150在整个研究过程中仍然保持活性。

image.png

传代过程中的耐药性变化。以OFL为阳性对照。MIC:最小抑菌浓度。图片来源:Nature Chemistry

  总结来说,由抗癌药物衍变而来的新型抗生素PK150不仅能有效对抗多种超级细菌,在小鼠多种组织中显著降低细菌负荷,还能避免诱导细菌耐药性,给药便利,具有良好的生物利用度,值得期待。

  目前Sieber团队正在进一步优化PK150的溶解度、毒性和抗菌谱等,以进一步开发这种潜在候选药物在临床前疾病模型中的抗菌潜力。


相关文章

全球研发投入不足,“超级细菌”仍在蔓延

据《自然》报道,未来25年,抗生素耐药性预计将导致全球3900万人死亡。但世界卫生组织(WHO)10月2日发布的两份报告显示,全球范围内寻找耐药性感染治疗方法的努力并未按计划推进。报告指出,全球抗生素......

研究人员设计出能杀灭耐药菌的新型抗生素

在人工智能(AI)的辅助下,麻省理工学院研究人员成功设计出新型抗生素,可快速、精准杀灭耐药淋病奈瑟菌和耐甲氧西林金黄色葡萄球菌(MRSA)等耐药菌。研究团队运用生成式人工智能算法设计了超过3600万种......

古菌揭示潜在抗生素宝库

根据本周发表的两份报告,古菌是生命之树上最不为人所知的微生物分支,是研究新型抗生素的重要线索。古菌以其在极端环境(如热泉和盐碱地)中茁壮成长的能力而闻名,它们也与细菌共存于于多种环境中。现在,两组研究......

新研究揭示微塑料抗生素复合污染的降解机制

近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队在国家重点研发计划、国家自然科学基金等项目的资助下,在畜禽废水中微塑料与抗生素共污染微生物降解机制研究方面取得新进展,揭示了微塑料-抗生素复合污染......

Nature杂志发表中国史前母系社会研究重大进展

19世纪中叶,瑞士人类学家巴霍芬在《母权论》(1861)一书中首次提出人类社会的童年曾普遍存在一个母系社会的发展阶段,但这缺乏考古学上支持史前母系社会存在的有力证据。另一方面,现代民族学研究所揭示的母......

抗生素耐药性问题有望解决

法国国家科学研究中心日前宣布,该机构参与的科研团队成功识别出一种新分子NM102,能够在不破坏宿主微生物群的前提下,使致病菌在面对免疫系统时“解除武装”。这一成果有望推动新型药物开发,并解决抗生素耐药......

研究显示每年约有8500吨抗生素进入全球河流

一项新研究警告称,全世界数百万公里的河流携带的抗生素污染水平足以促进耐药性并危害水生生物。该研究首次估算了人类使用抗生素造成的全球河流污染规模——每年约有8500吨抗生素进入世界各地的河流系统,这个数......

Nature公布21世纪最高引论文Top25第一竟是它

《自然》近日揭晓了21世纪被引用次数最多的25篇论文。令人意外的是,mRNA疫苗、CRISPR基因编辑、希格斯玻色子的发现等重大突破性成果均未进入榜单。真正入榜的,反而是涉及人工智能(AI)、提升研究......

大脑也会秋后算账!Nature:揭秘机体大脑“十年怕井绳”的机制

你是否曾经历过这样的场景?某次不小心误食了变质的海鲜,结果上吐下泻,之后哪怕只是看到类似的食物,甚至闻到一丝相关气味,都会感到强烈的恶心和不适。这种“一朝被蛇咬,十年怕井绳”的现象,其实是大脑中一种深......

研究发现一种靶向细菌核糖体的新型广谱抗生素lariocidin

加拿大和美国研究人员报告说,他们发现了一种靶向细菌核糖体的新型广谱套索肽抗生素,对多种致病细菌表现出杀伤力,其中包括对现有药物具有耐药性的菌株,为应对抗生素耐药性问题提供了新路径。相关论文近日发表在英......