发布时间:2015-05-21 14:46 原文链接: NatureMedicine:掌控细胞生死的miRNA

  瑞士苏黎世联邦理工学院(ETH)的研究人员在β细胞中对microRNA开展研究时,发现了一种对压力下细胞死亡起关键作用的microRNA。研究结果发布在5月18日的《自然医学》(Nature Medicine)杂志上。

  糖尿病是现代社会的重要祸患之一,糖尿病病例每年都在上升。全球已有超过3.8亿糖尿病患者。国际糖尿病基金会预计到2030年,将会有超过5亿2型糖尿病患者。现在,瑞士的糖尿病患者已超过43万人,其中4万人罹患1型糖尿病。

  胰腺胰岛素分泌β细胞相继死亡是1型糖尿病和2型糖尿病的一个共同点,其使得机体由此失去了一个重要信号分子――胰岛素,众所周知胰岛素对细胞从血液中吸收葡萄糖以及代谢这一燃料物质起至关重要的作用。

  MicroRNA触动细胞死亡

  然而直到现在人们都还不清楚究竟是什么导致了β细胞死亡。现在由苏黎世联邦理工学院分子健康科学研究所的教授Markus Stoffel领导的一个研究小组,发现了掌控这些胰岛素分泌细胞停止发挥功能的一些新机制。证实大量过度生成称作为miR-200的核酸短链触动了这些细胞死亡。

  研究人员发现在糖尿病小鼠β细胞中miR-200生成显著增高,导致了这一特殊的microRNA过量。利用小鼠模型,他们证实通过促进生成miR-200可迅速引起β细胞死亡。

  与之相反,生物学家们利用小鼠模型证实阻断miR-200他们可以确保β细胞的生存,甚至是在极端的压力之下。细胞压力的一个例子是小鼠血脂水平出现问题;另一个是生成胰岛素的内质网处于压力之下。

  Stoffel说:“这些观察结果非常具有启示性且有趣。”它们表明了miR-200对这一极其重要细胞类型的生存起关键作用。显然,在β细胞中miR-200可以导致程序性细胞死亡(凋亡)。

  β细胞精疲力竭而亡

  β细胞在糖尿病发病中起着重要的作用。胰岛素抵抗是糖尿病的一个预兆。例如,在超重者体内,肌肉细胞无法充分地或根本不能够对β细胞生成和分泌的胰岛素做出反应。这会导致β细胞继续地分裂和生长来提高胰岛素生成。在一段时期的加班工作后,β细胞会精疲力竭相继死亡。机体缺乏胰岛素,结果就导致了糖尿病。

  “在某种程度上,同样的事情也发生在孕妇身上,但在妊娠过后细胞分裂和胰岛素释放增加的过程会被逆转,”Stoffel说。而在肥胖人士的体内这一过程不可逆转,并且他们的血脂水平出现问题会给他们的β细胞造成额外的压力。

  三组microRNAs

  Stoffel研究小组近期确定了数个与β细胞的生存和功能,由此也与糖尿病相关的microRNAs。“看起来几个microRNAs对β细胞起作用,执行了不同的压力处理任务。”

  他们发现其中一个miR家族对于响应更多胰岛素需求时的β细胞分裂起至关重要的作用。如果这一RNA链不存在,将只有很少的细胞发生分裂。另一个microRNA家族则控制了胰岛素的生成和分泌量。“我们现在确立了第三个家族miR-200,对β细胞的生死负责,”Stoffel说。

  这些RNA短序列具有极大的治疗潜力。它们的活性可以被与其序列完全互补的对应RNA链抑制――Stoffel将它们称作为拮抗剂(antagomirs)。当前一些拮抗剂正在进行II临床试验用于治疗丙肝。miR-122拮抗剂可阻止丙肝病毒生成。但仍需要更多的研究确定是否可以利用这样的拮抗剂来应对与糖尿病相关的有害microRNAs以及如何做到这一点。

  至关重要的调控水平

  MicroRNAs是涉及了几个层次交互作用的复杂分级调控网络的一个组成部分。一些称作为转录因子的分子可以在DNA水平上调控基因活性,例如通过沉默某个基因使得它无法被转录。microRNAs是在转录水平上通过抑制信使RNA翻译为蛋白质来发挥作用。Stoffel说:“长期以来都低估了microRNAs负责的精细调控。”基因调控的微小变化都可以给细胞行为造成巨大的影响。这些短链RNA缓和了细胞对于压力的反应,确保了它不会失控。“因此microRNAs也控制了危机状况,”Stoffel说。

  系统发生学证实亿万年来MicroRNAs一直调控着一些细胞过程。人类有大约2.1万个基因,其中700-1,000个基因编码了microRNAs――有300个基因存在于从线虫到人类所有高等生命形式中。

相关文章

新型纳米酶可全周期促糖尿病伤口愈合

近日,西安交通大学金属材料强度全国重点实验室最新成果发表于《生物材料》。该成果针对糖尿病感染伤口提出了一种具有应用潜力的“全阶段”管理策略,集成感染控制、免疫调节以及促进神经血管生成与细胞外基质重塑于......

科学家发现细胞在动态基质中的新型高速迁移模式

近日,南京大学教授曹毅、四川大学教授魏强以及合作者在《自然-通讯》上发表研究成果。研究深入探讨了动态刚度增强细胞力所带来的功能性影响,发现快速循环刚度变化能让细胞在原本无法移动的软基底上实现高速迁移。......

GLP1口服新药为糖尿病治疗带来新突破

对许多糖尿病患者来说,控糖不仅是一场长期战斗,更是一场与生活质量的平衡。注射治疗的不便、药物依从性的困扰、体重和血脂的双重负担,让“控糖”成为一个难以轻松面对的命题。如今,这一切或许正在发生改变。近日......

3个简单调整可降低糖尿病风险

一项8月26日发表于《内科学年鉴》的研究表明,地中海饮食结合减少热量摄入、适度体育活动及专业减重支持,可将2型糖尿病风险降低31%。“我们正面临全球性的糖尿病大流行。”论文合著者、美国哈佛大学陈曾熙公......

慢病“盯上”脆皮年轻人!管住肚腩就是管住血糖

脂肪肝、血压偏高、空腹血糖异常……一些以往更多与中老年相关的健康现象,正悄然在不少年轻人身上显现。快节奏的工作状态常常挤占了运动和休息时间,便捷的外卖与快餐成为日常饮食的重要组成部分。这些点滴积累的生......

生物信号处理新框架精准解码细胞复杂语言

如何精确指挥细胞执行特定任务,是合成生物学发展的关键挑战。7月31日,中国科学院深圳先进技术研究院研究员陈业团队联合湖南省农业科学院单杨团队在《自然-通讯》发表最新研究。他们建立了一套全新的生物信号处......

新型敷料可有效治疗糖尿病创面感染并促进愈合

华东理工大学教授刘润辉团队与河北医科大学附属第三医院教授陈伟以及中国海洋大学教授于良民开展合作,设计并制备得到一种兼具抗菌、抗氧化、快速止血和渗出液清除能力的多功能创面敷料,可有效治疗糖尿病创面感染并......

新化合物能激活细胞天然防御系统

研究团队借助新型光遗传学工具筛选广谱抗病毒化合物。图片来源:美国麻省理工学院美国麻省理工学院领衔的研究团队借助创新性光遗传学技术,鉴定出3种能激活细胞天然防御系统的化合物——IBX-200、IBX-2......

赛多利斯完成收购MatTek,进一步扩充细胞技术产品线

近日,生命科学集团赛多利斯已成功完成对BICO集团旗下MatTek公司,包括Visikol的收购,相关交易于2025年4月对外宣布。在获得监管机构批准并满足其他常规交割条件后,该交易于2025年7月1......

科研人员成功开发出糖尿病精准分型新方法

6月26日,记者从中南大学湘雅二医院获悉,该院教授周智广、肖扬团队,联合英国埃克塞特大学、香港中文大学的科研团队,开发出了适用于中国人群糖尿病分型诊断的1型糖尿病遗传风险评分模型(以下简称C?GRS)......