一项新的研究中,美国加州理工学院化学工程、生物工程与生物化学教授Frances Arnold博士和她的团队构建出首次能够制造含有硼-碳键(B-C)的化合物的细菌。在此之前,这些硼-碳键仅来自化学家的实验室,并不能够由任何已知的生命形式产生。相关研究结果发表在2017年12月7日的Nature期刊上,论文标题为“Genetically programmed chiral organoborane synthesis”。
图片来源于网络
这一发现是合成生物学取得的新进展:活的有机体经教导后产生制造药物、农用化学品和其他的工业产品所需的化合物。去年,Arnold团队还设计出产生具有硅-碳键(Si-C)的分子,即有机硅化合物。
根据Arnold的说法,通过使用生物学而不是合成工艺,人们能够潜在地以 “更加绿色”的方式制造化合物。
为了诱导这些细菌产生含硼化合物,这些研究人员使用了Arnold在20世纪90年代早期开创的被称作定向进化的方法:酶在实验室中经过进化后产生所需的功能,比如构建在生物世界中未发现的化学键。正如在之前的基于硅的研究中做到的那样,他们首先利用一种常见的被称作细胞色素c的蛋白开展研究,不过这种蛋白具有一种在生活于冰岛温泉中的细菌内天然发生的突变。他们让编码这种蛋白的DNA发生突变,随后让这些发生突变的DNA序列导入到上千个细菌细胞中,以便观察所形成的这些细菌是否能够产生所需的硼-碳键。随后,他们再次让编码成功发生突变的蛋白的DNA发生突变。这种循环不断重复直到产生这种蛋白的细菌高效地制造硼-碳化合物。
这些研究人员制造出这种蛋白的六种版本,每种版本具有略微不同的用于制造各种含硼-碳键分子的能力。他们最终构建出的细菌制造含硼-碳键分子的产率比用于相同反应的合成化学过程高出400倍。
这些研究人员能够利用这种技术轻松地产生更多的具有特定功能的蛋白。
硼是化学领域的无名英雄之一。 它不是人们每天都听到的化学元素,但是它对化学的贡献是巨大的。这些研究人员很高兴将这个元素首次添加到合成生物学工具箱中。
美国哥伦比亚大学和洛克菲勒大学科学家利用细菌作为“特洛伊木马”,绕过人体免疫系统的监控,将病毒直接运送至肿瘤内部。随后,细菌与病毒协同作战,对癌细胞发起强力攻击。相关研究成果发表于最新一期《自然·生物......
在显微镜下的微观世界里,那些我们肉眼看不到的小生命,每天都上演着惊心动魄的“饥饿游戏”。最近,美国亚利桑那州立大学、瑞士苏黎世联邦理工学院以及瑞士联邦水科学与技术研究所组成的国际科研团队,发现了一种令......
在微观世界里,微生物会争夺地盘、向敌人喷射化学物质,有时还会利用微观地形来获得优势。一项研究发现,细菌可以利用邻近酵母细胞形成的液体小囊加速移动。这些微观的水分痕迹使细菌能够游得更远、传播得更快,揭示......
研究人员发现,即使使用60℃高温水洗程序清洗衣物,洗衣机仍无法清除潜在有害细菌,这一发现可能与抗生素耐药性上升有关。近日,PLoSOne发表的一项研究表明,受污染的织物可能成为持续数周的感染源,但研究......
水稻白叶枯病、番茄青枯病、猕猴桃溃疡病……这些细菌性病害会引发作物叶斑、枯萎、腐烂,严重时可造成作物绝收。然而,传统抗细菌农药不仅种类匮乏,而且大多采用铜制剂和抗生素等方式“无差别杀菌”,对环境并不友......
近日,东北农业大学单安山教授团队成功构建了兼具抗菌活性和细胞穿透活性的“双功能”自组装纳米抗菌肽用于对抗细胞内细菌,相关成果发表在《先进科学》上。“双功能”自组装纳米抗菌肽的性能。东北农业大学供图随着......
日本东京都立大学研究团队最近取得了一项重大突破。他们合成了一种由铁、镍和锆组成的新型过渡金属锆化物,在特定的成分比例下其展现出非常规超导性。相关研究发表在最新一期《合金与化合物杂志》上。超导体由于其零......
在人类肉眼难以察觉的微观世界中,微生物无处不在,它们之间的博弈与互动构成了复杂的生态系统网络。铁是微生物维持生存的必需元素,也是微生物之间的博弈互动所争夺的核心稀缺资源。然而,微生物在铁元素博弈中遵循......
近日,包括天津大学生物安全战略研究中心主任、北洋讲席教授张卫文在内的一个由国际顶尖合成生物学家组成的国际专家团队在《科学》发文,呼吁谨慎并采取集体行动来解决镜像细菌发展带来的潜在风险。据介绍,“镜像细......
想象一下,有一款新型疫苗,接种时不需要用针扎进肌肉注射,只需在皮肤上涂抹一种乳膏,使用起来毫无痛感,不会引起发热、肿胀、发红或手臂疼痛。人们无需排队等待接种,而且其价格低廉。据最新一期《自然》杂志报道......