发布时间:2008-10-28 23:00 原文链接: 【Original】如何测定手性化合物的光学纯度(一)

如何测定手性化合物的光学纯度——比旋光度(o.p.)的测定

手性分子能够把平面偏振光旋转到一定的角度,各对映体使其数值相同但方向相反,这种性质即光学活性。若是消旋体,两个异构体的量刚好相等,表现出来的却是无光学活性。同样,如果一个对映体的量超过了另一个,该手性化合物就有可能显示出光学活性。测定手性分子各对映异构体的组成(相对含量),对于开展不对称催化、手性药物合成等方面的研究具有十分重要的意义。对映体的纯度是手性质控的重要指标,可以通过测定旋光度/比旋度来反映对映体的光学纯度。

什么是光学纯度?

光学纯度(optical purity)是衡量旋光性样品中一个对映体超过另一个对映体的量的量度。若一个纯的光学活性物质是100%的一种对映异构体,那么一个外消旋体的光学纯度则为0。如某旋光性样品是由一个对映体R-和S-异构体组成,R-异构体含量为30%,S-异构体的含量为70%,其光学纯度则为40%。样品中有多余40%的S-异构体,而样品中有60%是外消旋体。

如何测量旋光度?

可以用旋光仪来测定旋光性物质的旋光度和旋光方向。旋光仪主要由一个钠光源、两个尼科尔棱镜和一个盛有测试样品的盛液管组成(见图2.28)。普通光先经过一个固定不动的棱镜(起偏镜)变成偏振光,然后通过盛液管、再由一个可转动的棱镜(检偏镜)来检验偏振光的振动方向和旋转角度。若使偏振光振动平面向右旋转,则称右旋;若使偏振光振动平面向左旋转,则称左旋。


1.JPG


光活性物质的旋光度与其浓度、测试温度、光波波长等因素密切相关。但是,在一定条件下,每一种光活性物质的旋光度为一常数,用比旋光度[α]表示:

2.jpg

   
其中,α为旋光仪测试值;c为样品溶液浓度,以lmL溶液所含样品克数表示;l为盛液管长度,单位为dm;λ为光源波长,通常采用钠光源,以D表示;t为测试温度。如果被测样品为液体,可直接测定而不需配成溶液。求算比旋光度时,只要将其相对密度值(d)代替上式中的浓度值(c)即可:

3.jpg

除了比旋光度外,还可用光学纯度、左旋和右旋对映体的百分含量以及对映体过量值(Enantiomer Excess,缩写为e.e.)等来反映光活性物质的纯度。
若设S为旋光异构体混合物中的主要异构体含量,R为其对映异构体含量,则对映体过量e.e.值用下式计算:

4.jpg


若设(-)对映体光学纯度为X%,则


5.jpg


光学纯度(P)定义为:实测产物比旋光度与光学纯标准对照品的比旋光度之比

6.jpg


例如,已知样品(S)-(-)-2-甲基丁醇的相对密度 =0.8,在20 cm长的盛液管中,其旋光测定值为-8.10,且其标样 =-5.8(纯),则有:


7.jpg






使用旋光仪测定手性分子对映体组成是一种传统和常规的方法,其突出特点在于:
1.        操作简便快捷,方法通用性好,可快速反映化合物对映体纯度。
2.        结合文献资料,对于确定化合物R- or S-构型简洁有效,经济实惠而不可缺少。
3.        对映体杂质,特别是某些大比旋光度杂质往往能显著影响旋光度的测定结果。在测定方法一致的情况下,这是判断药物纯度、监测不对称合成反应(原料与产物的旋光度差别较大或者方向相反的情况下)的一个直观而有效的方法。

比旋光度法也有其先天的局限性:
1.        对多手性中心化合物的光学纯度尚无法十分准确地测定。
2.        旋光度的测量或光学纯度的测定受到诸多因素的影响,如偏振光波长及溶剂、溶液的浓度、温度等,最重要的是,测量值会受到具有大比旋值的杂质的显著影响(成也萧何,败也萧何!);
3.        受溶剂影响:化合物残留溶剂种类和含量的不同,或者用于测量的溶剂种类不同,有可能对测定结果产生明显影响;同一旋光性物质用不同溶剂、不同pH测定时,由于缔合、溶剂化和解离情况不同而使比旋度变化,甚至改变旋光方向。
4.        需要相对多的样品量(对于小分子化合物,需用量约20mg),同时化合物的旋光值必须足够大以获得可靠的数值。

旋光测定注意事项:
由于旋光仪的测量受到上述诸多因素影响,因此测定时要求:
1、        被测样品要尽量处理干净——脱盐、除溶剂、排除具有较大旋光度杂质存在的可能。
2、        被测样品需严格称量,定量溶解,尽量获得纯的产物做对照。
3、        测量时室内温度尽量保持恒定。

特别提醒,用旋光法测定的对映体纯度应由另外一种独立的方法加以确认。手性色谱法测定对映体过量值已经被实践所证实为最可靠的方法。关于手性色谱法测定e.e.值的攻略,下次详细讲解。哈哈o(∩_∩)o…哈哈

相关文章

新策略可高效合成N–N轴手性抗肿瘤活性化合物

华东理工大学化学与分子工程学院特聘研究员李星光等人,为构建结构新颖的N–N轴手性化合物提供了新策略,也为发展新型抗肿瘤活性分子开辟了新途径,对推动药物化学、材料科学等领域的发展具有重要价值。相关研究近......

研究者在手性Tau蛋白自组装研究中获进展

近日,中国科学院重庆绿色智能技术研究院(以下简称重庆研究院)研究人员将纳米孔测量技术和原子力显微成像结合,构建了一种全新的单分子生物物理检测平台,在手性Tau蛋白及其自组装结构精准检测研究中取得进展,......

美国研发出一种手性拓扑超导体

美国宾夕法尼亚州立大学的科研人员推出了一种手性拓扑超导体(ChiralTopologicalSuperconductor),对于推进量子计算和探索理论手性马约拉纳粒子(Majoranaparticle......

国外研究表明手性磁体材料可提高类脑计算适应性

英国伦敦大学学院、伦敦帝国理工学院领导的国际合作研究表明,利用手性(扭曲)磁体的内在物理特性,可提高机器学习任务适应性,大幅减少类脑计算的能源使用。研究结果发表在《自然·材料》杂志上。传统计算由于独立......

上海有机所不对称远程炔丙基取代反应研究获进展

近年来,过渡金属催化的不对称η3-取代反应已成为构建手性不饱和片段的重要途径。中国科学院上海有机化学研究所何智涛课题组致力于过渡金属参与实现的非经典η3-取代反应的研究,并探索了一系列催化转化策略。近......

突破手性结构的极限

密歇根大学领导的一个研究小组已经证明,由纳米粒子自我组装的微米级"领结"可以形成一系列精确控制的卷曲形状。这一进展为简单地创造与扭曲的光线相互作用的材料铺平了道路,从而带来在机器视......

手性亚砜亚胺催化不对称合成研究取得新进展

手性亚砜亚胺具碱性氮原子且在极性溶剂中具良好的溶解性,是一类有潜在应用价值的生物电子等排体(图1)。合成此类化合物的主要策略是基于手性底物的立体专一性转化,如手性亚砜的亚胺化、手性亚砜亚胺的氧化和手性......

深圳先进院报道脚手架蛋白相分离调控微生物细胞极性

细胞不对称性(也称细胞极性)广泛存在于动植物和微生物细胞中,其基本特征是母细胞在分裂前发生细胞极化,从而不对称分裂生成两个不同命运的子代细胞。细胞极性是生命世界产生多样性的根本原因,在细胞生长、增殖、......

化学所发展出界面超分子手性传递分子机理研究新方法

手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于探索手性起源、探寻生命起源、制备手性材料......

我国发展出界面超分子手性传递分子机理新方法

手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于理解手性起源、探寻生命起源、制备手性材料......